common.py 13.8 KB
Newer Older
aiss's avatar
aiss committed
1
2
'''Copyright The Microsoft DeepSpeed Team'''

Shaden Smith's avatar
Shaden Smith committed
3
4
import os
import time
aiss's avatar
aiss committed
5
6
7
import inspect
from abc import ABC, abstractmethod
from pathlib import Path
Shaden Smith's avatar
Shaden Smith committed
8
9

import torch
aiss's avatar
aiss committed
10
import torch.multiprocessing as mp
11
import deepspeed
aiss's avatar
aiss committed
12
13
14
from deepspeed.accelerator import get_accelerator
import deepspeed.comm as dist
from torch.multiprocessing import Process
15

Shaden Smith's avatar
Shaden Smith committed
16
import pytest
aiss's avatar
aiss committed
17
18
from _pytest.outcomes import Skipped
from _pytest.fixtures import FixtureLookupError, FixtureFunctionMarker
Shaden Smith's avatar
Shaden Smith committed
19

20
# Worker timeout *after* the first worker has completed.
Jeff Rasley's avatar
Jeff Rasley committed
21
DEEPSPEED_UNIT_WORKER_TIMEOUT = 120
Shaden Smith's avatar
Shaden Smith committed
22

aiss's avatar
aiss committed
23
24
25
# Worker timeout for tests that hang
DEEPSPEED_TEST_TIMEOUT = 600

Shaden Smith's avatar
Shaden Smith committed
26

aiss's avatar
aiss committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
def get_xdist_worker_id():
    xdist_worker = os.environ.get('PYTEST_XDIST_WORKER', None)
    if xdist_worker is not None:
        xdist_worker_id = xdist_worker.replace('gw', '')
        return int(xdist_worker_id)
    return None


def get_master_port():
    master_port = os.environ.get('DS_TEST_PORT', '29503')
    xdist_worker_id = get_xdist_worker_id()
    if xdist_worker_id is not None:
        master_port = str(int(master_port) + xdist_worker_id)
    return master_port


aiss's avatar
aiss committed
43
def set_accelerator_visible():
aiss's avatar
aiss committed
44
45
46
47
48
    cuda_visible = os.environ.get("CUDA_VISIBLE_DEVICES", None)
    xdist_worker_id = get_xdist_worker_id()
    if xdist_worker_id is None:
        xdist_worker_id = 0
    if cuda_visible is None:
aiss's avatar
aiss committed
49
        # CUDA_VISIBLE_DEVICES is not set, discover it using accelerator specific command instead
aiss's avatar
aiss committed
50
        import subprocess
aiss's avatar
aiss committed
51
52
53
54
55
56
57
58
59
60
61
        if get_accelerator().device_name() == 'cuda':
            is_rocm_pytorch = hasattr(torch.version,
                                      'hip') and torch.version.hip is not None
            if is_rocm_pytorch:
                rocm_smi = subprocess.check_output(['rocm-smi', '--showid'])
                gpu_ids = filter(lambda s: 'GPU' in s,
                                 rocm_smi.decode('utf-8').strip().split('\n'))
                num_gpus = len(list(gpu_ids))
            else:
                nvidia_smi = subprocess.check_output(['nvidia-smi', '--list-gpus'])
                num_gpus = len(nvidia_smi.decode('utf-8').strip().split('\n'))
aiss's avatar
aiss committed
62
        else:
aiss's avatar
aiss committed
63
64
65
66
67
68
69
70
71
72
            assert get_accelerator().device_name() == 'xpu'
            import re
            clinfo = subprocess.check_output(['clinfo'])
            lines = clinfo.decode('utf-8').strip().split('\n')
            num_gpus = 0
            for line in lines:
                match = re.search('Device Type.*GPU', line)
                if match:
                    num_gpus += 1

aiss's avatar
aiss committed
73
74
75
76
77
78
79
80
81
82
83
84
        cuda_visible = ",".join(map(str, range(num_gpus)))

    # rotate list based on xdist worker id, example below
    # wid=0 -> ['0', '1', '2', '3']
    # wid=1 -> ['1', '2', '3', '0']
    # wid=2 -> ['2', '3', '0', '1']
    # wid=3 -> ['3', '0', '1', '2']
    dev_id_list = cuda_visible.split(",")
    dev_id_list = dev_id_list[xdist_worker_id:] + dev_id_list[:xdist_worker_id]
    os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(dev_id_list)


aiss's avatar
aiss committed
85
86
87
88
class DistributedExec(ABC):
    """
    Base class for distributed execution of functions/methods. Contains common
    methods needed for DistributedTest and DistributedFixture.
Shaden Smith's avatar
Shaden Smith committed
89
    """
aiss's avatar
aiss committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    world_size = 2
    backend = get_accelerator().communication_backend_name()
    init_distributed = True
    set_dist_env = True
    requires_cuda_env = True

    @abstractmethod
    def run(self):
        ...

    def __call__(self, request=None):
        self._fixture_kwargs = self._get_fixture_kwargs(request, self.run)
        world_size = self.world_size
        if self.requires_cuda_env and not get_accelerator().is_available():
            pytest.skip("only supported in accelerator environments.")

        if isinstance(world_size, int):
            world_size = [world_size]
        for procs in world_size:
            self._launch_procs(procs)
            time.sleep(0.5)

    def _get_fixture_kwargs(self, request, func):
        if not request:
            return {}
        # Grab fixture / parametrize kwargs from pytest request object
        fixture_kwargs = {}
        params = inspect.getfullargspec(func).args
        params.remove("self")
        for p in params:
            try:
                fixture_kwargs[p] = request.getfixturevalue(p)
            except FixtureLookupError:
                pass  # test methods can have kwargs that are not fixtures
        return fixture_kwargs

    def _launch_procs(self, num_procs):
        if torch.cuda.is_available() and torch.cuda.device_count() < num_procs:
            pytest.skip(
                f"Skipping test because not enough GPUs are available: {num_procs} required, {torch.cuda.device_count()} available"
            )
        mp.set_start_method('forkserver', force=True)
        skip_msg = mp.Queue()  # Allows forked processes to share pytest.skip reason
        processes = []
        for local_rank in range(num_procs):
            p = Process(target=self._dist_init, args=(local_rank, num_procs, skip_msg))
            p.start()
            processes.append(p)

        # Now loop and wait for a test to complete. The spin-wait here isn't a big
        # deal because the number of processes will be O(#GPUs) << O(#CPUs).
        any_done = False
        start = time.time()
        while (not any_done) and ((time.time() - start) < DEEPSPEED_TEST_TIMEOUT):
            for p in processes:
                if not p.is_alive():
                    any_done = True
                    break
            time.sleep(.1)  # So we don't hog CPU

        # If we hit the timeout, then presume a test is hanged
        if not any_done:
            for p in processes:
                p.terminate()
            pytest.exit("Test hanged, exiting", returncode=0)

        # Wait for all other processes to complete
        for p in processes:
            p.join(DEEPSPEED_UNIT_WORKER_TIMEOUT)

        failed = [(rank, p) for rank, p in enumerate(processes) if p.exitcode != 0]
        for rank, p in failed:
            # If it still hasn't terminated, kill it because it hung.
            if p.exitcode is None:
                p.terminate()
                pytest.fail(f'Worker {rank} hung.', pytrace=False)
            if p.exitcode < 0:
                pytest.fail(f'Worker {rank} killed by signal {-p.exitcode}',
                            pytrace=False)
            if p.exitcode > 0:
                pytest.fail(f'Worker {rank} exited with code {p.exitcode}',
                            pytrace=False)

        if not skip_msg.empty():
            # This assumed all skip messages are the same, it may be useful to
            # add a check here to assert all exit messages are equal
            pytest.skip(skip_msg.get())

    def _dist_init(self, local_rank, num_procs, skip_msg):
        """Initialize deepspeed.comm and execute the user function. """
        if self.set_dist_env:
Shaden Smith's avatar
Shaden Smith committed
181
            os.environ['MASTER_ADDR'] = '127.0.0.1'
aiss's avatar
aiss committed
182
            os.environ['MASTER_PORT'] = get_master_port()
183
184
185
186
187
            os.environ['LOCAL_RANK'] = str(local_rank)
            # NOTE: unit tests don't support multi-node so local_rank == global rank
            os.environ['RANK'] = str(local_rank)
            os.environ['WORLD_SIZE'] = str(num_procs)

aiss's avatar
aiss committed
188
189
        # turn off NCCL logging if set
        os.environ.pop('NCCL_DEBUG', None)
aiss's avatar
aiss committed
190

aiss's avatar
aiss committed
191
192
        if get_accelerator().is_available():
            set_accelerator_visible()
aiss's avatar
aiss committed
193

aiss's avatar
aiss committed
194
195
196
        if self.init_distributed:
            deepspeed.init_distributed(dist_backend=self.backend)
            dist.barrier()
Shaden Smith's avatar
Shaden Smith committed
197

aiss's avatar
aiss committed
198
199
        if get_accelerator().is_available():
            get_accelerator().set_device(local_rank)
Shaden Smith's avatar
Shaden Smith committed
200

aiss's avatar
aiss committed
201
202
203
204
205
206
207
        try:
            self.run(**self._fixture_kwargs)
        except BaseException as e:
            if isinstance(e, Skipped):
                skip_msg.put(e.msg)
            else:
                raise e
Shaden Smith's avatar
Shaden Smith committed
208

aiss's avatar
aiss committed
209
        if self.init_distributed or dist.is_initialized():
aiss's avatar
aiss committed
210
            # make sure all ranks finish at the same time
aiss's avatar
aiss committed
211
            dist.barrier()
aiss's avatar
aiss committed
212
            # tear down after test completes
aiss's avatar
aiss committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
            dist.destroy_process_group()


class DistributedFixture(DistributedExec):
    """
    Implementation that extends @pytest.fixture to allow for distributed execution.
    This is primarily meant to be used when a test requires executing two pieces of
    code with different world sizes.

    There are 2 parameters that can be modified:
        - world_size: int = 2 -- the number of processes to launch
        - backend: Literal['nccl','mpi','gloo'] = 'nccl' -- which backend to use

    Features:
        - able to call pytest.skip() inside fixture
        - can be reused by multiple tests
        - can accept other fixtures as input

    Limitations:
        - cannot use @pytest.mark.parametrize
        - world_size cannot be modified after definition and only one world_size value is accepted
        - any fixtures used must also be used in the test that uses this fixture (see example below)
        - return values cannot be returned. Passing values to a DistributedTest
          object can be achieved using class_tmpdir and writing to file (see example below)

    Usage:
        - must implement a run(self, ...) method
        - fixture can be used by making the class name input to a test function

    Example:
        @pytest.fixture(params=[10,20])
        def regular_pytest_fixture(request):
            return request.param

        class distributed_fixture_example(DistributedFixture):
            world_size = 4

            def run(self, regular_pytest_fixture, class_tmpdir):
                assert int(os.environ["WORLD_SIZE"]) == self.world_size
                local_rank = os.environ["LOCAL_RANK"]
                print(f"Rank {local_rank} with value {regular_pytest_fixture}")
                with open(os.path.join(class_tmpdir, f"{local_rank}.txt"), "w") as f:
                    f.write(f"{local_rank},{regular_pytest_fixture}")

        class TestExample(DistributedTest):
            world_size = 1

            def test(self, distributed_fixture_example, regular_pytest_fixture, class_tmpdir):
                assert int(os.environ["WORLD_SIZE"]) == self.world_size
                for rank in range(4):
                    with open(os.path.join(class_tmpdir, f"{rank}.txt"), "r") as f:
                        assert f.read() == f"{rank},{regular_pytest_fixture}"
    """
    is_dist_fixture = True

    # These values are just placeholders so that pytest recognizes this as a fixture
    _pytestfixturefunction = FixtureFunctionMarker(scope="function", params=None)
    __name__ = ""

    def __init__(self):
        assert isinstance(self.world_size, int), "Only one world size is allowed for distributed fixtures"
        self.__name__ = type(self).__name__
        _pytestfixturefunction = FixtureFunctionMarker(scope="function",
                                                       params=None,
                                                       name=self.__name__)
Shaden Smith's avatar
Shaden Smith committed
278
279


aiss's avatar
aiss committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class DistributedTest(DistributedExec):
    """
    Implementation for running pytest with distributed execution.

    There are 2 parameters that can be modified:
        - world_size: Union[int,List[int]] = 2 -- the number of processes to launch
        - backend: Literal['nccl','mpi','gloo'] = 'nccl' -- which backend to use

    Features:
        - able to call pytest.skip() inside tests
        - works with pytest fixtures, parametrize, mark, etc.
        - can contain multiple tests (each of which can be parametrized separately)
        - class methods can be fixtures (usable by tests in this class only)
        - world_size can be changed for individual tests using @pytest.mark.world_size(world_size)
        - class_tmpdir is a fixture that can be used to get a tmpdir shared among
          all tests (including DistributedFixture)

    Usage:
        - class name must start with "Test"
        - must implement one or more test*(self, ...) methods

    Example:
        @pytest.fixture(params=[10,20])
        def val1(request):
            return request.param

        @pytest.mark.fast
        @pytest.mark.parametrize("val2", [30,40])
        class TestExample(DistributedTest):
            world_size = 2

            @pytest.fixture(params=[50,60])
            def val3(self, request):
                return request.param

            def test_1(self, val1, val2, str1="hello world"):
                assert int(os.environ["WORLD_SIZE"]) == self.world_size
                assert all(val1, val2, str1)

            @pytest.mark.world_size(1)
            @pytest.mark.parametrize("val4", [70,80])
            def test_2(self, val1, val2, val3, val4):
                assert int(os.environ["WORLD_SIZE"]) == 1
                assert all(val1, val2, val3, val4)
    """
    is_dist_test = True

    # Temporary directory that is shared among test methods in a class
    @pytest.fixture(autouse=True, scope="class")
    def class_tmpdir(self, tmpdir_factory):
        fn = tmpdir_factory.mktemp(self.__class__.__name__)
        return fn

    def run(self, **fixture_kwargs):
        self._current_test(**fixture_kwargs)

    def __call__(self, request):
        self._current_test = self._get_current_test_func(request)
        self._fixture_kwargs = self._get_fixture_kwargs(request, self._current_test)

        if self.requires_cuda_env and not get_accelerator().is_available():
            pytest.skip("only supported in accelerator environments.")

        # Catch world_size override pytest mark
        for mark in getattr(request.function, "pytestmark", []):
            if mark.name == "world_size":
                world_size = mark.args[0]
                break
        else:
            world_size = self.world_size

        if isinstance(world_size, int):
            world_size = [world_size]
        for procs in world_size:
            self._launch_procs(procs)
            time.sleep(0.5)

    def _get_current_test_func(self, request):
        # DistributedTest subclasses may have multiple test methods
        func_name = request.function.__name__
        return getattr(self, func_name)
aiss's avatar
aiss committed
361
362
363
364
365


def get_test_path(filename):
    curr_path = Path(__file__).parent
    return str(curr_path.joinpath(filename))