"magic_pdf/rw/AbsReaderWriter.py" did not exist on "c3b8f6d7bb69c8cae86806fedf50f090a72a0dbd"
test_nccl_perf.py 3.05 KB
Newer Older
aiss's avatar
aiss committed
1
2
'''Copyright The Microsoft DeepSpeed Team'''

Conglong Li's avatar
Conglong Li committed
3
import torch
aiss's avatar
aiss committed
4
import deepspeed.comm as dist
Conglong Li's avatar
Conglong Li committed
5
6
7
8
9
10
11
import numpy as np
import argparse
import deepspeed
import os

from deepspeed.runtime.comm.nccl import NcclBackend
from deepspeed.utils.timer import SynchronizedWallClockTimer
aiss's avatar
aiss committed
12
from deepspeed.accelerator import get_accelerator
Conglong Li's avatar
Conglong Li committed
13
14
15
16
17
18
19
20
from statistics import mean

timers = SynchronizedWallClockTimer()

parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', type=int, default=-1)
args = parser.parse_args()

aiss's avatar
aiss committed
21
deepspeed.init_distributed(dist_backend=get_accelerator().communication_backend_name())
Conglong Li's avatar
Conglong Li committed
22
23
args.local_rank = int(os.environ['LOCAL_RANK'])

aiss's avatar
aiss committed
24
25
get_accelerator().set_device(args.local_rank)
device = torch.device(get_accelerator().device_name(), args.local_rank)
Conglong Li's avatar
Conglong Li committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

size = dist.get_world_size()
rank = dist.get_rank()

backend = NcclBackend()
local_rank = args.local_rank

# Setting tensor_size (BERT-Large)
tensor_size = 300 * 2**20
server_size = int(tensor_size / size)
if tensor_size % (8 * size) != 0:
    right_tensor_size = tensor_size + (8 * size - (tensor_size % (8 * size)))
else:
    right_tensor_size = tensor_size
right_server_size = right_tensor_size // size

# Adding bias to the initialization of the gradient we are communicating
# In order to get rid of the case where some elements in the gradient are too small
a = (torch.rand(tensor_size, device=device) - 0.5) + 0.01 * rank

worker_error = torch.zeros(right_tensor_size, device=device)
server_error = torch.zeros(right_server_size, device=device)

warmup = 10
iters = 10

# Warmup
for i in range(warmup):
    backend.compressed_allreduce(a, worker_error, server_error, local_rank)

time_list = []

a_sign = a.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)
scale = a.norm() / np.sqrt(a.numel())
a_compressed = scale * a_sign

print("Shape of the compressed buffer:", a_compressed.shape) if rank == 0 else None

for i in range(iters):
    timers('compressed_allreduce').start()
    backend.compressed_allreduce(a, worker_error, server_error, local_rank)
aiss's avatar
aiss committed
67
    #deepspeed.comm.all_reduce(a_compressed)
Conglong Li's avatar
Conglong Li committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    timers('compressed_allreduce').stop()
    time_list.append(timers('compressed_allreduce').elapsed())

#timer_names = ['compressed_allreduce']
#timers.log(names=timer_names, normalizer=1, memory_breakdown=None)

places = 2
convert = 1e3
float_size = 4

if rank == 0:
    for i in range(iters):
        lat = time_list[i]
        print("latency = ", lat * convert)

minlat = round(min(time_list) * convert)
maxlat = round(max(time_list) * convert)
meanlat = round(mean(time_list) * convert, places)
print("min, max, and mean = {} ms, {} ms, {} ms".format(minlat,
                                                        maxlat,
                                                        meanlat)) if rank == 0 else None
#print("tensor shape", a.shape)
duration = meanlat / 1e3
tput = ((tensor_size * 4) / duration)
print("algo throughput: %f Bytes/s, %f GB/s" % (tput, tput / 1e9)) if rank == 0 else None
size = tensor_size * 4
n = dist.get_world_size()
busbw = (size / duration) * (2 * (n - 1) / n)
print("busbw: %f GB/s" % (busbw / 1e9)) if rank == 0 else None