test_mpi_backend.py 3.29 KB
Newer Older
aiss's avatar
aiss committed
1
2
'''Copyright The Microsoft DeepSpeed Team'''

3
4
from mpi4py import MPI
import torch
aiss's avatar
aiss committed
5
import deepspeed.comm as dist
6
7
import numpy as np
import deepspeed
Conglong Li's avatar
Conglong Li committed
8
9

from deepspeed.runtime.comm.mpi import MpiBackend
aiss's avatar
aiss committed
10
from deepspeed.accelerator import get_accelerator
11
12
13
14
15

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

aiss's avatar
aiss committed
16
deepspeed.init_distributed(dist_backend=get_accelerator().communication_backend_name())
17

Conglong Li's avatar
Conglong Li committed
18
19
# Change cuda_aware to True to test out CUDA-Aware MPI communication
backend = MpiBackend(cuda_aware=False)
20

aiss's avatar
aiss committed
21
22
local_rank = rank % get_accelerator().device_count()
device = torch.device(get_accelerator().device_name(), local_rank)
23
24


aiss's avatar
aiss committed
25
# A simulated compression function using deepspeed.comm
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
def torch_sim(a):
    a_sign = a.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)
    scale = a.norm() / np.sqrt(a.numel())
    a_compressed = scale * a_sign
    a_sign = None
    worker_error = a - a_compressed
    dist.all_reduce(a_compressed)
    a_compressed.mul_(1 / dist.get_world_size())
    a_server_sign = a_compressed.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)
    a_list = torch.chunk(a_compressed, chunks=dist.get_world_size())
    server_scale = [chunk_a.norm() / np.sqrt(chunk_a.numel()) for chunk_a in a_list]
    a_sign_list = torch.chunk(a_server_sign, dist.get_world_size())
    a_server_compressed = torch.cat(
        [server_scale[i] * a_sign_list[i] for i in range(dist.get_world_size())])
    rank = dist.get_rank()
    server_error = a_list[rank] - server_scale[rank] * a_sign_list[rank]
aiss's avatar
aiss committed
42
43
    get_accelerator().synchronize()
    dist.barrier()
44
45
46
47
48
49
50
51
52
53
    return a_server_compressed, worker_error, server_error


tensor_size = 100 * 2**20
server_size = int(tensor_size / size)
if tensor_size % (8 * size) != 0:
    right_tensor_size = tensor_size + (8 * size - (tensor_size % (8 * size)))
else:
    right_tensor_size = tensor_size
right_server_size = right_tensor_size // size
Conglong Li's avatar
Conglong Li committed
54

55
56
57
# Adding bias to the initialization of the gradient we are communicating
# In order to get rid of the case where some elements in the gradient are too small
a = (torch.rand(tensor_size, device=device) - 0.5) + 0.01 * rank
Conglong Li's avatar
Conglong Li committed
58

59
60
worker_error = torch.zeros(right_tensor_size, device=device)
server_error = torch.zeros(right_server_size, device=device)
Conglong Li's avatar
Conglong Li committed
61

62
a_torch, worker_error_torch, server_error_torch = torch_sim(a)
aiss's avatar
aiss committed
63
get_accelerator().empty_cache()
Conglong Li's avatar
Conglong Li committed
64
65
66

a_after = backend.compressed_allreduce(a, worker_error, server_error, local_rank)

67
68
69
70
71
72
73
threshold = 1e-6
magnitude_threshold = 1e-6
diff_mask = (a_after - a_torch) > threshold
diff_server_mask = torch.chunk(diff_mask, size)[rank]
mpi_server = torch.chunk(a_after, size)[rank] + server_error
torch_server = torch.chunk(a_torch, size)[rank] + server_error_torch

Conglong Li's avatar
Conglong Li committed
74
75
test_correctness = True

76
77
# If the number in the compensated_server_m is too small (e.g 1e-8), then calling sign() might be problematic
# The test would skip those numbers that are too small in compensated_server_m
Conglong Li's avatar
Conglong Li committed
78
79
80
if test_correctness:
    if torch.sum(diff_server_mask) == 0:
        print('Successfully passed the test for MPI Backend at Rank {}'.format(rank))
81
    else:
Conglong Li's avatar
Conglong Li committed
82
83
84
85
86
        check_mag_mask = mpi_server[diff_server_mask] > magnitude_threshold
        if torch.sum(check_mag_mask) == 0:
            print('Successfully passed the test for MPI Backend at Rank {}'.format(rank))
        else:
            print('Fails at {} of positions'.format(torch.sum(check_mag_mask)))