fake_quantizer.cu 36.6 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
/*
Copyright The Microsoft DeepSpeed Team
*/

aiss's avatar
aiss committed
5
6
#include <math.h>
#include "custom_cuda_layers.h"
aiss's avatar
aiss committed
7
#include "memory_access_utils.h"
aiss's avatar
aiss committed
8
9
10

namespace cg = cooperative_groups;

aiss's avatar
aiss committed
11
__global__ void fake_quantize_kernel(__half* vals, int group_size, int num_bits)
aiss's avatar
aiss committed
12
13
14
{
#if __CUDA_ARCH__ >= 700 || defined(__HIP_PLATFORM_HCC__)

aiss's avatar
aiss committed
15
16
17
    cg::thread_block b = cg::this_thread_block();  // tb
    cg::thread_block_tile<32> g =
        cg::tiled_partition<32>(b);  // warp, 32 not optimal for AMD which should be 64.
aiss's avatar
aiss committed
18
19
20
21
22
23

    int gid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;
    int id = threadIdx.x;

aiss's avatar
aiss committed
24
25
    constexpr int granularity = 16;
    constexpr int vals_per_access = granularity / sizeof(__half);
aiss's avatar
aiss committed
26

aiss's avatar
aiss committed
27
    __half data[vals_per_access];
aiss's avatar
aiss committed
28
29
30

    int group_id = blockIdx.x;

aiss's avatar
aiss committed
31
32
33
34
35
36
37
    int thread_index = id * vals_per_access;
    int reg_count = 0;
    int offset = group_id * group_size;
    float max = -10000.0;
    for (int thread_index = id * vals_per_access; thread_index < group_size;
         thread_index += blockDim.x * vals_per_access) {
        mem_access::load_global<granularity>(data, vals + offset + thread_index);
aiss's avatar
aiss committed
38
39

#pragma unroll
aiss's avatar
aiss committed
40
41
        for (int i = 0; i < vals_per_access; i++) {
            if (abs((float)data[i]) > max) max = abs((float)data[i]);
aiss's avatar
aiss committed
42
        }
aiss's avatar
aiss committed
43
    }
aiss's avatar
aiss committed
44
45

#pragma unroll
aiss's avatar
aiss committed
46
47
48
49
50
    for (int i = 1; i < WARP_SIZE; i <<= 1) {
        auto temp = g.shfl_xor(max, i);
        if (max < temp) max = temp;
    }
    __shared__ float partialMax[WARP_SIZE];
aiss's avatar
aiss committed
51

aiss's avatar
aiss committed
52
    if (lane == 0) partialMax[gid] = max;
aiss's avatar
aiss committed
53

aiss's avatar
aiss committed
54
    b.sync();
aiss's avatar
aiss committed
55

aiss's avatar
aiss committed
56
    if (lane < warp_num) max = partialMax[lane];
aiss's avatar
aiss committed
57

aiss's avatar
aiss committed
58
59
60
61
62
#pragma unroll
    for (int i = 1; i < WARP_SIZE; i <<= 1) {
        auto temp = g.shfl_down(max, i);
        if (max < temp) max = temp;
    }
aiss's avatar
aiss committed
63

aiss's avatar
aiss committed
64
    max = g.shfl(max, 0);
aiss's avatar
aiss committed
65

aiss's avatar
aiss committed
66
67
68
69
    float q_scale = (float)(1 << num_bits) / (2 * max + 1e-5);
    float q_scale_inv = 1 / q_scale;
    int q_range_max = (1 << (num_bits - 1)) - 1;
    int q_range_min = -(1 << (num_bits - 1));
aiss's avatar
aiss committed
70

aiss's avatar
aiss committed
71
72
73
74
75
76
77
78
79
80
81
    for (int thread_index = id * vals_per_access; thread_index < group_size;
         thread_index += blockDim.x * vals_per_access) {
        mem_access::load_global<granularity>(data, vals + offset + thread_index);
#pragma unroll
        for (int j = 0; j < vals_per_access; j++) {
            float q_data;
            q_data = __half2float(data[j]);
            q_data = __float2int_rn(q_data * q_scale);
            q_data = q_data > (q_range_max) ? (q_range_max)
                                            : (q_data < (q_range_min) ? (q_range_min) : q_data);
            data[j] = __float2half_rn(q_data * q_scale_inv);
aiss's avatar
aiss committed
82
        }
aiss's avatar
aiss committed
83
        mem_access::store_global<granularity>(vals + offset + thread_index, data);
aiss's avatar
aiss committed
84
    }
aiss's avatar
aiss committed
85

aiss's avatar
aiss committed
86
87
88
#endif
}

aiss's avatar
aiss committed
89
__global__ void fake_quantize_kernel(float* vals, int group_size, int num_bits)
aiss's avatar
aiss committed
90
91
92
93
94
95
96
97
98
{
    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);

    int gid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;
    int id = threadIdx.x;

aiss's avatar
aiss committed
99
100
    constexpr int granularity = 16;
    constexpr int vals_per_access = granularity / sizeof(float);
aiss's avatar
aiss committed
101

aiss's avatar
aiss committed
102
    float data[vals_per_access];
aiss's avatar
aiss committed
103
104
105

    int bid = blockIdx.x;

aiss's avatar
aiss committed
106
107
    int thread_index = id * vals_per_access;

aiss's avatar
aiss committed
108
109
    int reg_count = 0;

aiss's avatar
aiss committed
110
    int offset = bid * group_size;
aiss's avatar
aiss committed
111

aiss's avatar
aiss committed
112
    float max = -10000.0;
aiss's avatar
aiss committed
113

aiss's avatar
aiss committed
114
115
116
    for (int thread_index = id * vals_per_access; thread_index < group_size;
         thread_index += blockDim.x * vals_per_access) {
        mem_access::load_global<granularity>(data, vals + offset + thread_index);
aiss's avatar
aiss committed
117

aiss's avatar
aiss committed
118
119
120
121
#pragma unroll
        for (int i = 0; i < vals_per_access; i++) {
            if (abs(data[i]) > max) max = abs(data[i]);
        }
aiss's avatar
aiss committed
122
    }
aiss's avatar
aiss committed
123

aiss's avatar
aiss committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#pragma unroll
    for (int i = 1; i < WARP_SIZE; i <<= 1) {
        auto temp = g.shfl_xor(max, i);
        if (max < temp) max = temp;
    }
    __shared__ float partialMax[WARP_SIZE];

    if (lane == 0) partialMax[gid] = max;

    b.sync();

    if (lane < warp_num) max = partialMax[lane];

    b.sync();

#pragma unroll
    for (int i = 1; i < warp_num; i <<= 1) {
        auto temp = g.shfl_down(max, i);
        if (max < temp) max = temp;
    }

    max = g.shfl(max, 0);

    float q_scale = (1 << num_bits) / (2 * max + 1e-5);
    float q_scale_inv = 1 / q_scale;

aiss's avatar
aiss committed
150
151
    int q_range_max = (1 << (num_bits - 1)) - 1;
    int q_range_min = -(1 << (num_bits - 1));
aiss's avatar
aiss committed
152

aiss's avatar
aiss committed
153
154
155
156
157
158
159
160
161
162
    for (int thread_index = id * vals_per_access; thread_index < group_size;
         thread_index += blockDim.x * vals_per_access) {
        mem_access::load_global<granularity>(data, vals + offset + thread_index);
#pragma unroll
        for (int j = 0; j < vals_per_access; j++) {
            float q_data;
            q_data = __float2int_rn(data[j] * q_scale);
            q_data = q_data > (q_range_max) ? (q_range_max)
                                            : (q_data < (q_range_min) ? (q_range_min) : q_data);
            data[j] = roundf(q_data * q_scale_inv);
aiss's avatar
aiss committed
163
        }
aiss's avatar
aiss committed
164
        mem_access::store_global<granularity>(vals + offset + thread_index, data);
aiss's avatar
aiss committed
165
166
167
168
    }
}

template <typename T>
aiss's avatar
aiss committed
169
170
171
172
173
void launch_fake_quantize_kernel(T* vals,
                                 int total_count,
                                 int group_num,
                                 int num_bits,
                                 cudaStream_t stream)
aiss's avatar
aiss committed
174
175
176
177
{
    dim3 grid_dim(group_num);
    dim3 block_dim(1024);

aiss's avatar
aiss committed
178
179
    fake_quantize_kernel<<<grid_dim, block_dim, 0, stream>>>(
        vals, total_count / group_num, num_bits);
aiss's avatar
aiss committed
180
181
}

aiss's avatar
aiss committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
template void launch_fake_quantize_kernel(float* vals,
                                          int total_count,
                                          int group_num,
                                          int num_bits,
                                          cudaStream_t stream);
template void launch_fake_quantize_kernel(__half* vals,
                                          int total_count,
                                          int group_num,
                                          int num_bits,
                                          cudaStream_t stream);

__global__ void sr_fake_quantize_kernel(__half* vals,
                                        int token_size,
                                        int token_num,
                                        int num_bits,
                                        std::pair<uint64_t, uint64_t> seed)
aiss's avatar
aiss committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
{
#if __CUDA_ARCH__ >= 700 || defined(__HIP_PLATFORM_HCC__)

    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);

    int gid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;

    int idx = blockIdx.x * blockDim.x + threadIdx.x;

    float2* vals_cast = reinterpret_cast<float2*>(vals);

    __half2 data_low[128];
    __half2 data_high[128];

    int bid = blockIdx.x;

    curandStatePhilox4_32_10_t state;
    curand_init(seed.first, idx, seed.second, &state);
    unsigned int tid = threadIdx.x;
    int reg_count = 0;
    int offset = bid * token_size;
    int group_index = bid * token_size + tid;

    int total_count = token_size * token_num;
    if (group_index < total_count) {
        // float min = 10000.0;
        float max = -10000.0;
        while (tid < token_size) {
            float2 data = vals_cast[offset + tid];
            __half2* data_h = reinterpret_cast<__half2*>(&data);
            data_low[reg_count] = data_h[0];
            data_high[reg_count] = data_h[1];

            float2 data_f[2];
            data_f[0] = __half22float2(data_h[0]);
            data_f[1] = __half22float2(data_h[1]);

            if (abs((float)data_f[0].x) > max) max = abs((float)data_f[0].x);
            if (abs((float)data_f[0].y) > max) max = abs((float)data_f[0].y);
            if (abs((float)data_f[1].x) > max) max = abs((float)data_f[1].x);
            if (abs((float)data_f[1].y) > max) max = abs((float)data_f[1].y);

            tid += blockDim.x;
            reg_count++;
        }

#pragma unroll
        for (int i = 1; i < WARP_SIZE; i <<= 1) {
            auto temp = g.shfl_xor(max, i);
            if (max < temp) max = temp;
        }

        __shared__ float partialMax[WARP_SIZE];

        if (lane == 0) partialMax[gid] = max;

        b.sync();

        if (lane < warp_num) max = partialMax[lane];

#pragma unroll
        for (int i = 1; i < warp_num; i <<= 1) {
            auto temp = g.shfl_down(max, i);
            if (max < temp) max = temp;
        }

        max = g.shfl(max, 0);

        float q_scale_val = (float)(1 << num_bits) / (max * 2 + 1e-5);
        float high_q = (float)((1 << (num_bits - 1)) - 1);
        float low_q = (float)(-((1 << (num_bits - 1))));

        for (int i = 0; i < reg_count; i++) {
            int token_index = i * blockDim.x + threadIdx.x;
            if (token_index < token_size) {
                float2 data_f[2];
                data_f[0] = __half22float2(data_low[i]);
                data_f[1] = __half22float2(data_high[i]);

                float2 q_data_int[2];
                q_data_int[0].x = (float)((int)(data_f[0].x * q_scale_val));
                q_data_int[0].y = (float)((int)(data_f[0].y * q_scale_val));
                q_data_int[1].x = (float)((int)(data_f[1].x * q_scale_val));
                q_data_int[1].y = (float)((int)(data_f[1].y * q_scale_val));

                // Stochastic rounding
                float4 rand = curand_uniform4(&state);

                float q_error[4];
                q_error[0] = abs(data_f[0].x - (q_data_int[0].x / q_scale_val)) * q_scale_val;
                q_error[1] = abs(data_f[0].y - (q_data_int[0].y / q_scale_val)) * q_scale_val;
                q_error[2] = abs(data_f[1].x - (q_data_int[1].x / q_scale_val)) * q_scale_val;
                q_error[3] = abs(data_f[1].y - (q_data_int[1].y / q_scale_val)) * q_scale_val;

                q_data_int[0].x =
                    (rand.x < q_error[0] && q_data_int[0].x > low_q && q_data_int[0].x < high_q)
                        ? (q_data_int[0].x + (data_f[0].x > 0 ? 1 : -1))
                        : q_data_int[0].x;
                q_data_int[0].y =
                    (rand.y < q_error[1] && q_data_int[0].y > low_q && q_data_int[0].y < high_q)
                        ? (q_data_int[0].y + (data_f[0].y > 0 ? 1 : -1))
                        : q_data_int[0].y;
                q_data_int[1].x =
                    (rand.w < q_error[2] && q_data_int[1].x > low_q && q_data_int[1].x < high_q)
                        ? (q_data_int[1].x + (data_f[1].x > 0 ? 1 : -1))
                        : q_data_int[1].x;
                q_data_int[1].y =
                    (rand.z < q_error[3] && q_data_int[1].y > low_q && q_data_int[1].y < high_q)
                        ? (q_data_int[1].y + (data_f[1].y > 0 ? 1 : -1))
                        : q_data_int[1].y;

                data_f[0].x = q_data_int[0].x / q_scale_val;
                data_f[0].y = q_data_int[0].y / q_scale_val;
                data_f[1].x = q_data_int[1].x / q_scale_val;
                data_f[1].y = q_data_int[1].y / q_scale_val;

                float2 result;
                __half2* result_h = reinterpret_cast<__half2*>(&result);
                result_h[0] = __float22half2_rn(data_f[0]);
                result_h[1] = __float22half2_rn(data_f[1]);

                vals_cast[offset + token_index] = result;
            }
        }
    }
#endif
}

aiss's avatar
aiss committed
329
330
331
332
333
__global__ void sr_fake_quantize_kernel(float* vals,
                                        int token_size,
                                        int token_num,
                                        int num_bits,
                                        std::pair<uint64_t, uint64_t> seed)
aiss's avatar
aiss committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
{
    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);

    int gid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;
    int id = threadIdx.x;

    int idx = blockIdx.x * blockDim.x + id;

    float4* vals_cast = reinterpret_cast<float4*>(vals);

    float4 data[128];

    int bid = blockIdx.x;
    int tid = threadIdx.x;
    curandStatePhilox4_32_10_t state;
    curand_init(seed.first, idx, seed.second, &state);

    int group_index = bid * token_size + threadIdx.x;
    int reg_count = 0;
    int total_count = token_size * token_num;
    if (group_index < total_count) {
        // float min = 10000.0;
        float max = -10000.0;

        while (tid < token_size) {
            data[reg_count] = vals_cast[group_index];

            if (abs(data[reg_count].x) > max) max = abs(data[reg_count].x);
            if (abs(data[reg_count].y) > max) max = abs(data[reg_count].y);
            if (abs(data[reg_count].z) > max) max = abs(data[reg_count].z);
            if (abs(data[reg_count].w) > max) max = abs(data[reg_count].w);

            group_index += blockDim.x;
            tid += blockDim.x;
            reg_count++;
        }

#pragma unroll
        for (int i = 1; i < WARP_SIZE; i <<= 1) {
            auto temp = g.shfl_xor(max, i);
            if (max < temp) max = temp;
        }
        __shared__ float partialMax[WARP_SIZE];

        if (lane == 0) partialMax[gid] = max;

        b.sync();

        if (lane < warp_num) max = partialMax[lane];

#pragma unroll
        for (int i = 1; i < warp_num; i <<= 1) {
            auto temp = g.shfl_down(max, i);
            if (max < temp) max = temp;
        }

        max = g.shfl(max, 0);

        float q_scale_val = (float)(1 << num_bits) / (max * 2 + 1e-5);
        float high_q = (float)((1 << (num_bits - 1)) - 1);
        float low_q = (float)(-((1 << (num_bits - 1))));

        int offset = (bid)*token_size;
        for (int i = 0; i < reg_count; i++) {
            group_index = i * blockDim.x + threadIdx.x;
            if (group_index < token_size) {
                float4 q_data = data[i];

                float4 q_data_int;
                q_data_int.x = (float)((int)(q_data.x * q_scale_val));
                q_data_int.y = (float)((int)(q_data.y * q_scale_val));
                q_data_int.w = (float)((int)(q_data.w * q_scale_val));
                q_data_int.z = (float)((int)(q_data.z * q_scale_val));

                // Stochastic rounding
                float4 rand = curand_uniform4(&state);

                float q_error[4];
                q_error[0] = abs(q_data.x - (q_data_int.x / q_scale_val)) * q_scale_val;
                q_error[1] = abs(q_data.y - (q_data_int.y / q_scale_val)) * q_scale_val;
                q_error[2] = abs(q_data.w - (q_data_int.w / q_scale_val)) * q_scale_val;
                q_error[3] = abs(q_data.z - (q_data_int.z / q_scale_val)) * q_scale_val;

                q_data_int.x =
                    (rand.x < q_error[0] && q_data_int.x > low_q && q_data_int.x < high_q)
                        ? (q_data_int.x + (q_data.x > 0 ? 1 : -1))
                        : q_data_int.x;
                q_data_int.y =
                    (rand.y < q_error[1] && q_data_int.y > low_q && q_data_int.y < high_q)
                        ? (q_data_int.y + (q_data.y > 0 ? 1 : -1))
                        : q_data_int.y;
                q_data_int.w =
                    (rand.w < q_error[2] && q_data_int.w > low_q && q_data_int.w < high_q)
                        ? (q_data_int.w + (q_data.w > 0 ? 1 : -1))
                        : q_data_int.w;
                q_data_int.z =
                    (rand.z < q_error[3] && q_data_int.z > low_q && q_data_int.z < high_q)
                        ? (q_data_int.z + (q_data.z > 0 ? 1 : -1))
                        : q_data_int.z;

                q_data_int.x /= q_scale_val;
                q_data_int.y /= q_scale_val;
                q_data_int.w /= q_scale_val;
                q_data_int.z /= q_scale_val;

                vals_cast[group_index + offset] = q_data_int;
            }
        }
    }
}

template <typename T>
aiss's avatar
aiss committed
449
450
451
452
453
void launch_sr_fake_quantize_kernel(T* vals,
                                    int total_count,
                                    int group_num,
                                    int num_bits,
                                    cudaStream_t stream)
aiss's avatar
aiss committed
454
455
456
457
458
459
460
{
    dim3 block_dim(1024);
    dim3 grid_dim(group_num);

    uint64_t inc = total_count / grid_dim.x / block_dim.x;
    std::pair<uint64_t, uint64_t> seed = Context::Instance().IncrementOffset(inc);

aiss's avatar
aiss committed
461
    sr_fake_quantize_kernel<<<grid_dim, block_dim, 0, stream>>>(
aiss's avatar
aiss committed
462
463
        vals, (total_count / group_num) / 4, group_num, num_bits, seed);
}
aiss's avatar
aiss committed
464
465
466
467
468
469
470
471
472
473
template void launch_sr_fake_quantize_kernel(float* vals,
                                             int total_count,
                                             int group_num,
                                             int num_bits,
                                             cudaStream_t stream);
template void launch_sr_fake_quantize_kernel(__half* vals,
                                             int total_count,
                                             int group_num,
                                             int num_bits,
                                             cudaStream_t stream);
aiss's avatar
aiss committed
474

aiss's avatar
aiss committed
475
__global__ void fake_quantize_kernel_asym(__half* vals, int group_size, int num_bits)
aiss's avatar
aiss committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
{
#if __CUDA_ARCH__ >= 700 || defined(__HIP_PLATFORM_HCC__)

    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);

    int gid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;
    int id = threadIdx.x;

    float2* vals_cast = reinterpret_cast<float2*>(vals);

    float2 data[MAX_REG];

    int group_id = blockIdx.x;

    {
        int group_index = id;
        int reg_count = 0;
        int offset = group_id * group_size;
        float max = -10000.0;
        float min = 10000.0;

        while (group_index < group_size && reg_count < MAX_REG) {
            data[reg_count] = vals_cast[offset + group_index];
            __half* data_h = reinterpret_cast<__half*>(&data[reg_count]);

            if (((float)data_h[0]) > max) max = (float)data_h[0];
            if (((float)data_h[1]) > max) max = (float)data_h[1];
            if (((float)data_h[2]) > max) max = (float)data_h[2];
            if (((float)data_h[3]) > max) max = (float)data_h[3];

            if (((float)data_h[0]) < min) min = (float)data_h[0];
            if (((float)data_h[1]) < min) min = (float)data_h[1];
            if (((float)data_h[2]) < min) min = (float)data_h[2];
            if (((float)data_h[3]) < min) min = (float)data_h[3];

            group_index += blockDim.x;
            reg_count++;
        }

#pragma unroll
        for (int i = 1; i < WARP_SIZE; i <<= 1) {
            auto temp = g.shfl_xor(max, i);
            if (max < temp) max = temp;
        }

#pragma unroll
        for (int i = 1; i < WARP_SIZE; i <<= 1) {
            auto temp = g.shfl_xor(min, i);
            if (min > temp) min = temp;
        }

        __shared__ float partialMax[WARP_SIZE];
        __shared__ float partialMin[WARP_SIZE];

        if (lane == 0) partialMax[gid] = max;
        if (lane == 0) partialMin[gid] = min;

        b.sync();

        if (lane < warp_num) max = partialMax[lane];
        if (lane < warp_num) min = partialMin[lane];

#pragma unroll
        for (int i = 1; i < warp_num; i <<= 1) {
            auto temp = g.shfl_down(max, i);
            if (max < temp) max = temp;
        }
#pragma unroll
        for (int i = 1; i < warp_num; i <<= 1) {
            auto temp = g.shfl_down(min, i);
            if (min > temp) min = temp;
        }

        max = g.shfl(max, 0);
        min = g.shfl(min, 0);

        float q_scale = ((max - min) + 1e-5) / (float)(1 << num_bits);
        float q_scale_inv = 1 / q_scale;

        for (int i = 0; i < reg_count; i++) {
            group_index = i * blockDim.x + id;
            if (group_index < group_size) {
                __half2* data_h = reinterpret_cast<__half2*>(&data[i]);
                float2 q_data[2];
                q_data[0] = __half22float2(data_h[0]);
                q_data[1] = __half22float2(data_h[1]);

                float2 q_data_int[2];

                q_data_int[0].x = roundf((q_data[0].x - min) * q_scale_inv);
                q_data_int[0].y = roundf((q_data[0].y - min) * q_scale_inv);
                q_data_int[1].x = roundf((q_data[1].x - min) * q_scale_inv);
                q_data_int[1].y = roundf((q_data[1].y - min) * q_scale_inv);

                q_data_int[0].x = q_data_int[0].x * q_scale + min;
                q_data_int[0].y = q_data_int[0].y * q_scale + min;
                q_data_int[1].x = q_data_int[1].x * q_scale + min;
                q_data_int[1].y = q_data_int[1].y * q_scale + min;

                data_h[0] = __float22half2_rn(q_data_int[0]);
                data_h[1] = __float22half2_rn(q_data_int[1]);

                vals_cast[offset + group_index] = data[i];
            }
        }
    }
#endif
}

aiss's avatar
aiss committed
588
__global__ void fake_quantize_kernel_asym(float* vals, int group_size, int num_bits)
aiss's avatar
aiss committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
{
    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);

    int gid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;
    int id = threadIdx.x;

    float4* vals_cast = reinterpret_cast<float4*>(vals);

    float4 data[MAX_REG];

    int bid = blockIdx.x;

    int group_index = bid * group_size + id;
    int reg_count = 0;

    float max = -10000.0;
    float min = 10000.0;

    while (id < group_size && reg_count < MAX_REG) {
        float4 data_reg = vals_cast[group_index];
        data[reg_count] = data_reg;

        if (data_reg.x > max) max = data_reg.x;
        if (data_reg.y > max) max = data_reg.y;
        if (data_reg.w > max) max = data_reg.w;
        if (data_reg.z > max) max = data_reg.z;

        if (data_reg.x < min) min = data_reg.x;
        if (data_reg.y < min) min = data_reg.y;
        if (data_reg.w < min) min = data_reg.w;
        if (data_reg.z < min) min = data_reg.z;

        group_index += blockDim.x;
        id += blockDim.x;
        reg_count++;
    }
    id = threadIdx.x;

#pragma unroll
    for (int i = 1; i < WARP_SIZE; i <<= 1) {
        auto temp = g.shfl_xor(max, i);
        if (max < temp) max = temp;
    }

#pragma unroll
    for (int i = 1; i < WARP_SIZE; i <<= 1) {
        auto temp = g.shfl_xor(min, i);
        if (min > temp) min = temp;
    }

    __shared__ float partialMax[WARP_SIZE];
    __shared__ float partialMin[WARP_SIZE];

    if (lane == 0) partialMax[gid] = max;
    if (lane == 0) partialMin[gid] = min;

    b.sync();

    if (lane < warp_num) max = partialMax[lane];
    if (lane < warp_num) min = partialMin[lane];

#pragma unroll
    for (int i = 1; i < warp_num; i <<= 1) {
        auto temp = g.shfl_down(max, i);
        if (max < temp) max = temp;
    }
#pragma unroll
    for (int i = 1; i < warp_num; i <<= 1) {
        auto temp = g.shfl_down(min, i);
        if (min > temp) min = temp;
    }

    max = g.shfl(max, 0);
    min = g.shfl(min, 0);

    float q_scale = ((max - min) + 1e-5) / (float)(1 << num_bits);
    float q_scale_inv = 1 / q_scale;
    for (int i = 0; i < reg_count; i++) {
        group_index = i * blockDim.x + id;
        if (group_index < group_size) {
            float4 q_data;
            q_data = data[i];

            float4 q_data_int;
            q_data_int.x = roundf((q_data.x - min) * q_scale_inv);
            q_data_int.y = roundf((q_data.y - min) * q_scale_inv);
            q_data_int.w = roundf((q_data.w - min) * q_scale_inv);
            q_data_int.z = roundf((q_data.z - min) * q_scale_inv);

            q_data.x = q_data_int.x * q_scale + min;
            q_data.y = q_data_int.y * q_scale + min;
            q_data.w = q_data_int.w * q_scale + min;
            q_data.z = q_data_int.z * q_scale + min;

            vals_cast[group_index + bid * group_size] = q_data;
        }
    }
}

template <typename T>
aiss's avatar
aiss committed
692
693
694
695
696
void launch_fake_quantize_kernel_asym(T* vals,
                                      int total_count,
                                      int group_num,
                                      int num_bits,
                                      cudaStream_t stream)
aiss's avatar
aiss committed
697
698
699
700
{
    dim3 grid_dim(group_num);
    dim3 block_dim(1024);

aiss's avatar
aiss committed
701
    fake_quantize_kernel_asym<<<grid_dim, block_dim, 0, stream>>>(
aiss's avatar
aiss committed
702
703
704
        vals, (total_count / group_num) / 4, num_bits);
}

aiss's avatar
aiss committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
template void launch_fake_quantize_kernel_asym(float* vals,
                                               int total_count,
                                               int group_num,
                                               int num_bits,
                                               cudaStream_t stream);
template void launch_fake_quantize_kernel_asym(__half* vals,
                                               int total_count,
                                               int group_num,
                                               int num_bits,
                                               cudaStream_t stream);

__global__ void sr_fake_quantize_kernel_asym(__half* vals,
                                             int token_size,
                                             int token_num,
                                             int num_bits,
                                             std::pair<uint64_t, uint64_t> seed)
aiss's avatar
aiss committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
{
#if __CUDA_ARCH__ >= 700 || defined(__HIP_PLATFORM_HCC__)

    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);

    int gid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;

    int idx = blockIdx.x * blockDim.x + threadIdx.x;

    float2* vals_cast = reinterpret_cast<float2*>(vals);

    __half2 data_low[128];
    __half2 data_high[128];

    int bid = blockIdx.x;

    curandStatePhilox4_32_10_t state;
    curand_init(seed.first, idx, seed.second, &state);
    unsigned int tid = threadIdx.x;
    int reg_count = 0;
    int offset = bid * token_size;
    int group_index = bid * token_size + tid;

    int total_count = token_size * token_num;
    if (group_index < total_count) {
        float min = 10000.0;
        float max = -10000.0;
        while (tid < token_size) {
            float2 data = vals_cast[offset + tid];
            __half2* data_h = reinterpret_cast<__half2*>(&data);
            data_low[reg_count] = data_h[0];
            data_high[reg_count] = data_h[1];

            float2 data_f[2];
            data_f[0] = __half22float2(data_h[0]);
            data_f[1] = __half22float2(data_h[1]);

            if (((float)data_f[0].x) > max) max = (float)data_f[0].x;
            if (((float)data_f[0].y) > max) max = (float)data_f[0].y;
            if (((float)data_f[1].x) > max) max = (float)data_f[1].x;
            if (((float)data_f[1].y) > max) max = (float)data_f[1].y;

            if (((float)data_f[0].x) < min) min = (float)data_f[0].x;
            if (((float)data_f[0].y) < min) min = (float)data_f[0].y;
            if (((float)data_f[1].x) < min) min = (float)data_f[1].x;
            if (((float)data_f[1].y) < min) min = (float)data_f[1].y;

            tid += blockDim.x;
            reg_count++;
        }

#pragma unroll
        for (int i = 1; i < WARP_SIZE; i <<= 1) {
            auto temp = g.shfl_xor(max, i);
            if (max < temp) max = temp;
        }

#pragma unroll
        for (int i = 1; i < WARP_SIZE; i <<= 1) {
            auto temp = g.shfl_xor(min, i);
            if (min > temp) min = temp;
        }

        __shared__ float partialMax[WARP_SIZE];
        __shared__ float partialMin[WARP_SIZE];

        if (lane == 0) partialMax[gid] = max;
        if (lane == 0) partialMin[gid] = min;

        b.sync();

        if (lane < warp_num) max = partialMax[lane];
        if (lane < warp_num) min = partialMin[lane];

#pragma unroll
        for (int i = 1; i < warp_num; i <<= 1) {
            auto temp = g.shfl_down(max, i);
            if (max < temp) max = temp;
        }
#pragma unroll
        for (int i = 1; i < warp_num; i <<= 1) {
            auto temp = g.shfl_down(min, i);
            if (min > temp) min = temp;
        }

        max = g.shfl(max, 0);
        min = g.shfl(min, 0);

        float q_scale_val = ((max - min) + 1e-5) / (float)(1 << num_bits);
        float q_scale_val_inv = 1 / q_scale_val;
        float high_q = (float)((1 << num_bits) - 1);

        for (int i = 0; i < reg_count; i++) {
            int token_index = i * blockDim.x + threadIdx.x;
            if (token_index < token_size) {
                float2 data_f[2];
                data_f[0] = __half22float2(data_low[i]);
                data_f[1] = __half22float2(data_high[i]);

                float2 q_data_int[2];
                q_data_int[0].x = (float)((unsigned int)((data_f[0].x - min) * q_scale_val_inv));
                q_data_int[0].y = (float)((unsigned int)((data_f[0].y - min) * q_scale_val_inv));
                q_data_int[1].x = (float)((unsigned int)((data_f[1].x - min) * q_scale_val_inv));
                q_data_int[1].y = (float)((unsigned int)((data_f[1].y - min) * q_scale_val_inv));

                // Stochastic rounding
                float4 rand = curand_uniform4(&state);

                float q_error[4];
                q_error[0] =
                    abs(data_f[0].x - ((q_data_int[0].x * q_scale_val) + min)) * q_scale_val_inv;
                q_error[1] =
                    abs(data_f[0].y - ((q_data_int[0].y * q_scale_val) + min)) * q_scale_val_inv;
                q_error[2] =
                    abs(data_f[1].x - ((q_data_int[1].x * q_scale_val) + min)) * q_scale_val_inv;
                q_error[3] =
                    abs(data_f[1].y - ((q_data_int[1].y * q_scale_val) + min)) * q_scale_val_inv;

                q_data_int[0].x = (rand.x < q_error[0] && q_data_int[0].x < high_q)
                                      ? (q_data_int[0].x + 1)
                                      : q_data_int[0].x;
                q_data_int[0].y = (rand.y < q_error[1] && q_data_int[0].y < high_q)
                                      ? (q_data_int[0].y + 1)
                                      : q_data_int[0].y;
                q_data_int[1].x = (rand.w < q_error[2] && q_data_int[1].x < high_q)
                                      ? (q_data_int[1].x + 1)
                                      : q_data_int[1].x;
                q_data_int[1].y = (rand.z < q_error[3] && q_data_int[1].y < high_q)
                                      ? (q_data_int[1].y + 1)
                                      : q_data_int[1].y;

                data_f[0].x = q_data_int[0].x * q_scale_val + min;
                data_f[0].y = q_data_int[0].y * q_scale_val + min;
                data_f[1].x = q_data_int[1].x * q_scale_val + min;
                data_f[1].y = q_data_int[1].y * q_scale_val + min;

                float2 result;
                __half2* result_h = reinterpret_cast<__half2*>(&result);
                result_h[0] = __float22half2_rn(data_f[0]);
                result_h[1] = __float22half2_rn(data_f[1]);

                vals_cast[offset + token_index] = result;
            }
        }
    }
#endif
}

aiss's avatar
aiss committed
872
873
874
875
876
__global__ void sr_fake_quantize_kernel_asym(float* vals,
                                             int token_size,
                                             int token_num,
                                             int num_bits,
                                             std::pair<uint64_t, uint64_t> seed)
aiss's avatar
aiss committed
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
{
    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<32> g = cg::tiled_partition<32>(b);

    int gid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;
    int id = threadIdx.x;

    int idx = blockIdx.x * blockDim.x + id;

    float4* vals_cast = reinterpret_cast<float4*>(vals);

    float4 data[128];

    int bid = blockIdx.x;
    int tid = threadIdx.x;
    curandStatePhilox4_32_10_t state;
    curand_init(seed.first, idx, seed.second, &state);

    int group_index = bid * token_size + threadIdx.x;
    int reg_count = 0;
    int total_count = token_size * token_num;
    if (group_index < total_count) {
        float min = 10000.0;
        float max = -10000.0;

        while (tid < token_size) {
            float4 data_reg = vals_cast[group_index];
            data[reg_count] = data_reg;
            if (data_reg.x > max) max = data_reg.x;
            if (data_reg.y > max) max = data_reg.y;
            if (data_reg.w > max) max = data_reg.w;
            if (data_reg.z > max) max = data_reg.z;

            if (data_reg.x < min) min = data_reg.x;
            if (data_reg.y < min) min = data_reg.y;
            if (data_reg.w < min) min = data_reg.w;
            if (data_reg.z < min) min = data_reg.z;

            group_index += blockDim.x;
            tid += blockDim.x;
            reg_count++;
        }

#pragma unroll
        for (int i = 1; i < WARP_SIZE; i <<= 1) {
            auto temp = g.shfl_xor(max, i);
            if (max < temp) max = temp;
        }

#pragma unroll
        for (int i = 1; i < WARP_SIZE; i <<= 1) {
            auto temp = g.shfl_xor(min, i);
            if (min > temp) min = temp;
        }

        __shared__ float partialMax[WARP_SIZE];
        __shared__ float partialMin[WARP_SIZE];

        if (lane == 0) partialMax[gid] = max;
        if (lane == 0) partialMin[gid] = min;

        b.sync();

        if (lane < warp_num) max = partialMax[lane];
        if (lane < warp_num) min = partialMin[lane];

#pragma unroll
        for (int i = 1; i < warp_num; i <<= 1) {
            auto temp = g.shfl_down(max, i);
            if (max < temp) max = temp;
        }
#pragma unroll
        for (int i = 1; i < warp_num; i <<= 1) {
            auto temp = g.shfl_down(min, i);
            if (min > temp) min = temp;
        }

        max = g.shfl(max, 0);
        min = g.shfl(min, 0);

        float q_scale_val = ((max - min) + 1e-5) / (float)(1 << num_bits);
        float high_q = (float)((1 << num_bits) - 1);

        int offset = (bid)*token_size;
        for (int i = 0; i < reg_count; i++) {
            group_index = i * blockDim.x + threadIdx.x;
            if (group_index < token_size) {
                float4 q_data = data[i];

                float4 q_data_int;
                q_data_int.x = (float)((int)((q_data.x - min) / q_scale_val));
                q_data_int.y = (float)((int)((q_data.y - min) / q_scale_val));
                q_data_int.w = (float)((int)((q_data.w - min) / q_scale_val));
                q_data_int.z = (float)((int)((q_data.z - min) / q_scale_val));

                // Stochastic rounding
                float4 rand = curand_uniform4(&state);

                float q_error[4];
                q_error[0] = abs(q_data.x - ((q_data_int.x * q_scale_val) + min)) / q_scale_val;
                q_error[1] = abs(q_data.y - ((q_data_int.y * q_scale_val) + min)) / q_scale_val;
                q_error[2] = abs(q_data.w - ((q_data_int.w * q_scale_val) + min)) / q_scale_val;
                q_error[3] = abs(q_data.z - ((q_data_int.z * q_scale_val) + min)) / q_scale_val;

                q_data_int.x = (rand.x < q_error[0] && q_data_int.x < high_q) ? (q_data_int.x + 1)
                                                                              : q_data_int.x;
                q_data_int.y = (rand.y < q_error[1] && q_data_int.y < high_q) ? (q_data_int.y + 1)
                                                                              : q_data_int.y;
                q_data_int.w = (rand.w < q_error[2] && q_data_int.w < high_q) ? (q_data_int.w + 1)
                                                                              : q_data_int.w;
                q_data_int.z = (rand.z < q_error[3] && q_data_int.z < high_q) ? (q_data_int.z + 1)
                                                                              : q_data_int.z;

                q_data_int.x = q_data_int.x * q_scale_val + min;
                q_data_int.y = q_data_int.y * q_scale_val + min;
                q_data_int.w = q_data_int.w * q_scale_val + min;
                q_data_int.z = q_data_int.z * q_scale_val + min;

                vals_cast[group_index + offset] = q_data_int;
            }
        }
    }
}
template <typename T>
aiss's avatar
aiss committed
1003
1004
1005
1006
1007
void launch_sr_fake_quantize_kernel_asym(T* vals,
                                         int total_count,
                                         int group_num,
                                         int num_bits,
                                         cudaStream_t stream)
aiss's avatar
aiss committed
1008
1009
1010
1011
1012
1013
1014
{
    dim3 block_dim(1024);
    dim3 grid_dim(group_num);

    uint64_t inc = total_count / grid_dim.x / block_dim.x;
    std::pair<uint64_t, uint64_t> seed = Context::Instance().IncrementOffset(inc);

aiss's avatar
aiss committed
1015
    sr_fake_quantize_kernel<<<grid_dim, block_dim, 0, stream>>>(
aiss's avatar
aiss committed
1016
1017
        vals, (total_count / group_num) / 4, group_num, num_bits, seed);
}
aiss's avatar
aiss committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
template void launch_sr_fake_quantize_kernel_asym(float* vals,
                                                  int total_count,
                                                  int group_num,
                                                  int num_bits,
                                                  cudaStream_t stream);
template void launch_sr_fake_quantize_kernel_asym(__half* vals,
                                                  int total_count,
                                                  int group_num,
                                                  int num_bits,
                                                  cudaStream_t stream);