"official/projects/nhnet/models_test.py" did not exist on "68dc253ea8273b0907cd36a45a5b78e3f6d2d024"
multi_tensor_adam.cu 6.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* Copyright 2020 The Microsoft DeepSpeed Team
   Copyright NVIDIA/apex
   This file is adapted from fused adam in NVIDIA/apex, commit a109f85
*/

#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/Exceptions.h>
// Another possibility:
// #include <torch/all.h>

#include <assert.h>

aiss's avatar
aiss committed
15
16
17
#ifdef __HIPCC__
#include "multi_tensor_apply_hip.cuh"
#else
18
#include "multi_tensor_apply.cuh"
aiss's avatar
aiss committed
19
#endif
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "type_shim.h"

#define BLOCK_SIZE 512
#define ILP 4

typedef enum {
    ADAM_MODE_0 = 0,  // L2 regularization mode
    ADAM_MODE_1 = 1   // Decoupled weight decay mode(AdamW)
} adamMode_t;

using MATH_T = float;

template <typename T>
struct AdamFunctor {
    __device__ __forceinline__ void operator()(int chunk_size,
                                               volatile int* noop_gmem,
                                               TensorListMetadata<4>& tl,
                                               const float beta1,
                                               const float beta2,
                                               const float beta1_correction,
                                               const float beta2_correction,
                                               const float epsilon,
                                               const float lr,
                                               adamMode_t mode,
                                               const float decay)
    {
        // I'd like this kernel to propagate infs/nans.
        // if(*noop_gmem == 1)
        //   return;

        int tensor_loc = tl.block_to_tensor[blockIdx.x];

        // potentially use to pass in list of scalar
        // int tensor_num = tl.start_tensor_this_launch + tensor_loc;

        int chunk_idx = tl.block_to_chunk[blockIdx.x];
        int n = tl.sizes[tensor_loc];

        T* g = (T*)tl.addresses[0][tensor_loc];
        g += chunk_idx * chunk_size;

        T* p = (T*)tl.addresses[1][tensor_loc];
        p += chunk_idx * chunk_size;

        T* m = (T*)tl.addresses[2][tensor_loc];
        m += chunk_idx * chunk_size;

        T* v = (T*)tl.addresses[3][tensor_loc];
        v += chunk_idx * chunk_size;

        n -= chunk_idx * chunk_size;

        // see note in multi_tensor_scale_kernel.cu
        for (int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x * ILP) {
            MATH_T r_g[ILP];
            MATH_T r_p[ILP];
            MATH_T r_m[ILP];
            MATH_T r_v[ILP];
#pragma unroll
            for (int ii = 0; ii < ILP; ii++) {
                int i = i_start + threadIdx.x + ii * blockDim.x;
                if (i < n && i < chunk_size) {
                    r_g[ii] = g[i];
                    r_p[ii] = p[i];
                    r_m[ii] = m[i];
                    r_v[ii] = v[i];
                } else {
                    r_g[ii] = MATH_T(0);
                    r_p[ii] = MATH_T(0);
                    r_m[ii] = MATH_T(0);
                    r_v[ii] = MATH_T(0);
                }
            }
#pragma unroll
            for (int ii = 0; ii < ILP; ii++) {
                if (mode == ADAM_MODE_0) {  // L2
                    r_g[ii] = r_g[ii] + (decay * r_p[ii]);
                    r_m[ii] = beta1 * r_m[ii] + (1 - beta1) * r_g[ii];
                    r_v[ii] = beta2 * r_v[ii] + (1 - beta2) * r_g[ii] * r_g[ii];
                    MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
                    MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
                    MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
                    MATH_T update = next_m_unbiased / denom;
                    r_p[ii] = r_p[ii] - (lr * update);
                } else {  // weight decay
                    r_m[ii] = beta1 * r_m[ii] + (1 - beta1) * r_g[ii];
                    r_v[ii] = beta2 * r_v[ii] + (1 - beta2) * r_g[ii] * r_g[ii];
                    MATH_T next_m_unbiased = r_m[ii] / beta1_correction;
                    MATH_T next_v_unbiased = r_v[ii] / beta2_correction;
                    MATH_T denom = sqrtf(next_v_unbiased) + epsilon;
                    MATH_T update = (next_m_unbiased / denom) + (decay * r_p[ii]);
                    r_p[ii] = r_p[ii] - (lr * update);
                }
            }
#pragma unroll
            for (int ii = 0; ii < ILP; ii++) {
                int i = i_start + threadIdx.x + ii * blockDim.x;
                if (i < n && i < chunk_size) {
                    p[i] = r_p[ii];
                    m[i] = r_m[ii];
                    v[i] = r_v[ii];
                }
            }
        }
    }
};

void multi_tensor_adam_cuda(int chunk_size,
                            at::Tensor noop_flag,
                            std::vector<std::vector<at::Tensor>> tensor_lists,
                            const float lr,
                            const float beta1,
                            const float beta2,
                            const float epsilon,
                            const int step,
                            const int mode,
                            const int bias_correction,
                            const float weight_decay)
{
    using namespace at;

    // Handle bias correction mode
    float bias_correction1 = 1.0f, bias_correction2 = 1.0f;
    if (bias_correction == 1) {
        bias_correction1 = 1 - std::pow(beta1, step);
        bias_correction2 = 1 - std::pow(beta2, step);
    }

    // Assume single type across p,g,m1,m2 now
    DISPATCH_DOUBLE_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(),
                                   0,
                                   "adam",
                                   multi_tensor_apply<4>(BLOCK_SIZE,
                                                         chunk_size,
                                                         noop_flag,
                                                         tensor_lists,
                                                         AdamFunctor<scalar_t_0>(),
                                                         beta1,
                                                         beta2,
                                                         bias_correction1,
                                                         bias_correction2,
                                                         epsilon,
                                                         lr,
                                                         (adamMode_t)mode,
                                                         weight_decay);)

    AT_CUDA_CHECK(cudaGetLastError());
}