normalize_layer.h 7.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#pragma once

#include <cuda.h>
#include <cuda_fp16.h>
#include <stdio.h>
#include <fstream>
#include "custom_cuda_layers.h"

using namespace std;

template <typename T>
class Normalize_Layer {
public:
    struct Config {
        uint32_t batchSize;
        uint32_t seqLength;
        uint32_t hiddenDim;
        float epsilon;
19
        bool training;
20
        bool useMean;
21
22
23
24
25
26
        Config(uint32_t batch,
               uint32_t seq,
               uint32_t h,
               float epsilon = 1e-12,
               bool training = true,
               bool useMean = true)
27
28
29
            : batchSize(batch),
              seqLength(seq),
              hiddenDim(h),
30
              epsilon(epsilon),
31
32
33
34
35
36
              training(training),
              useMean(useMean)
        {
        }
    };

37
38
    Normalize_Layer(Config config)
        : config_(config), vars(nullptr), means(nullptr), vals_hat(nullptr)
39
40
41
    {
    }

42
    ~Normalize_Layer() {}
43

44
    void ForwardCheckpoint(int bsz,  // batch * seq
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                           T* vals,
                           const T* residual,
                           const T* gamma,
                           const T* betta,
                           cudaStream_t& stream,
                           bool preLayerNorm = false)
    {
        launch_bias_residual_layer_norm(vals,
                                        residual,
                                        gamma,
                                        betta,
                                        config_.epsilon,
                                        bsz,
                                        config_.hiddenDim,
                                        stream,
                                        preLayerNorm,
                                        config_.training,
                                        vars,
63
                                        means);
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    }

    void Forward(int bsz,
                 T* vals,
                 const T* residual,
                 const T* gamma,
                 const T* betta,
                 cudaStream_t& stream,
                 bool preLayerNorm = false)
    {
        launch_bias_residual_layer_norm(vals,
                                        residual,
                                        gamma,
                                        betta,
                                        config_.epsilon,
                                        bsz,
                                        config_.hiddenDim,
                                        stream,
                                        preLayerNorm,
                                        config_.training,
84
                                        vars);
85
86
87
88
89
90
91
92
    }

    void Backward(int bsz,
                  const T* out_grad,
                  const T* gamma,
                  T* gamma_grad,
                  T* betta_grad,
                  cudaStream_t stream[2],
93
                  T* inp_grad_out,
94
95
96
97
98
99
100
101
102
                  const T* norm_in = nullptr)
    {
        launch_layerNorm_backward(out_grad,
                                  norm_in,
                                  vars,
                                  means,
                                  gamma,
                                  gamma_grad,
                                  betta_grad,
103
                                  inp_grad_out,
104
105
106
107
108
109
110
111
112
113
114
115
                                  bsz,
                                  config_.hiddenDim,
                                  stream);
    }

    void Backward(int bsz,
                  const T* out_grad,
                  const T* gamma,
                  const T* betta,
                  T* gamma_grad,
                  T* betta_grad,
                  cudaStream_t stream[2],
116
117
                  T* inp_grad_out,
                  const T* norm_out)
118
119
    {
        launch_layerNorm_backward(out_grad,
120
                                  norm_out,
121
122
123
124
                                  vars,
                                  gamma,
                                  gamma_grad,
                                  betta_grad,
125
                                  inp_grad_out,
126
127
128
                                  bsz,
                                  config_.hiddenDim,
                                  stream,
129
                                  !config_.useMean,
130
131
132
133
134
135
136
137
138
139
                                  betta);
    }

    void BackwardFusedAdd(int bsz,
                          const T* out_grad1,
                          const T* out_grad2,
                          const T* gamma,
                          T* gamma_grad,
                          T* betta_grad,
                          cudaStream_t stream[2],
140
                          T* inp_grad_out,
141
142
143
144
145
146
147
148
149
150
                          const T* norm_in = nullptr)
    {
        launch_layerNorm_backward_fused_add(out_grad1,
                                            out_grad2,
                                            norm_in,
                                            vars,
                                            means,
                                            gamma,
                                            gamma_grad,
                                            betta_grad,
151
                                            inp_grad_out,
152
153
154
155
156
157
158
159
160
161
162
163
164
                                            bsz,
                                            config_.hiddenDim,
                                            stream);
    }

    void BackwardFusedAdd(int bsz,
                          const T* out_grad1,
                          const T* out_grad2,
                          const T* gamma,
                          const T* betta,
                          T* gamma_grad,
                          T* betta_grad,
                          cudaStream_t stream[2],
165
166
                          T* inp_grad_out,
                          const T* norm_out)
167
168
169
    {
        launch_layerNorm_backward_fused_add(out_grad1,
                                            out_grad2,
170
                                            norm_out,
171
172
173
174
                                            vars,
                                            gamma,
                                            gamma_grad,
                                            betta_grad,
175
                                            inp_grad_out,
176
177
178
                                            bsz,
                                            config_.hiddenDim,
                                            stream,
179
                                            !config_.useMean,
180
181
182
183
184
                                            betta);
    }

    inline bool UseMean() const { return config_.useMean; }

185
186
187
188
189
190
191
192
193
194
195
196
    inline void SetVar(T* variance)
    {
        if (!variance) { throw std::runtime_error("Normalize variance is null."); }
        vars = variance;
    }

    inline void SetMean(T* mean)
    {
        if (!mean) { throw std::runtime_error("Normalize mean is null."); }
        means = mean;
    }

197
198
199
200
201
202
private:
    Config config_;
    T* vars;
    T* means;
    T* vals_hat;
};