cpu_adam.cpp 33 KB
Newer Older
Jeff Rasley's avatar
Jeff Rasley committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include "cpu_adam.h"
#include <cuda_runtime_api.h>
#include <math.h>
#include <omp.h>
#include <torch/extension.h>
#include <iostream>
#include <memory>
#include <type_traits>
#include <unordered_map>
#include "cublas_v2.h"
#include "cuda.h"
#include "curand.h"
#include "custom_cuda_layers.h"

static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;

#define ROUND_DOWN(size, step) ((size) & ~((step)-1))

// C++ interface

void Adam_Optimizer::Step(float* _params,
                          float* grads,
                          float* _exp_avg,
                          float* _exp_avg_sq,
                          size_t _param_size,
                          __half* dev_params)
{
    float betta1_minus1 = 1 - _betta1;
    float betta2_minus1 = 1 - _betta2;

31
    float step_size = -1 * _alpha / _bias_correction1;
32
    float w_decay = -1 * _alpha * _weight_decay;
Jeff Rasley's avatar
Jeff Rasley committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    size_t rounded_size = 0;

#if defined(__AVX512__) or defined(__AVX256__)

    AVX_Data betta1_4;
    betta1_4.data = SIMD_SET(_betta1);
    AVX_Data betta2_4;
    betta2_4.data = SIMD_SET(_betta2);

    AVX_Data betta1_minus1_4;
    betta1_minus1_4.data = SIMD_SET(betta1_minus1);
    AVX_Data betta2_minus1_4;
    betta2_minus1_4.data = SIMD_SET(betta2_minus1);

    AVX_Data bias2_sqrt;
48
    bias2_sqrt.data = SIMD_SET(_bias_correction2);
Jeff Rasley's avatar
Jeff Rasley committed
49
50
51
52
53
54
55
56

    AVX_Data eps_4;
    eps_4.data = SIMD_SET(_eps);

    AVX_Data step_size_4;
    step_size_4.data = SIMD_SET(step_size);

    AVX_Data weight_decay4;
57
58
    if (_weight_decay > 0)
        weight_decay4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
Jeff Rasley's avatar
Jeff Rasley committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH);

    for (size_t t = 0; t < rounded_size; t += TILE) {
        size_t copy_size = TILE;
        if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
        size_t offset = copy_size + t;
#pragma omp parallel for
        for (size_t i = t; i < offset; i += SIMD_WIDTH) {
            AVX_Data grad_4;
            grad_4.data = SIMD_LOAD(grads + i);

            AVX_Data momentum_4;
            momentum_4.data = SIMD_LOAD(_exp_avg + i);
            AVX_Data variance_4;
            variance_4.data = SIMD_LOAD(_exp_avg_sq + i);

            AVX_Data param_4;
            param_4.data = SIMD_LOAD(_params + i);

78
            if (_weight_decay > 0 && !_adamw_mode) {
Jeff Rasley's avatar
Jeff Rasley committed
79
                grad_4.data = SIMD_FMA(param_4.data, weight_decay4.data, grad_4.data);
80
            }
Jeff Rasley's avatar
Jeff Rasley committed
81
82
83
84
85
86
87
88
89
90
            momentum_4.data = SIMD_MUL(momentum_4.data, betta1_4.data);
            momentum_4.data = SIMD_FMA(grad_4.data, betta1_minus1_4.data, momentum_4.data);

            variance_4.data = SIMD_MUL(variance_4.data, betta2_4.data);
            grad_4.data = SIMD_MUL(grad_4.data, grad_4.data);
            variance_4.data = SIMD_FMA(grad_4.data, betta2_minus1_4.data, variance_4.data);

            grad_4.data = SIMD_SQRT(variance_4.data);
            grad_4.data = SIMD_FMA(grad_4.data, bias2_sqrt.data, eps_4.data);
            grad_4.data = SIMD_DIV(momentum_4.data, grad_4.data);
91
92
93
            if (_weight_decay > 0 && _adamw_mode) {
                param_4.data = SIMD_FMA(param_4.data, weight_decay4.data, param_4.data);
            }
Jeff Rasley's avatar
Jeff Rasley committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            param_4.data = SIMD_FMA(grad_4.data, step_size_4.data, param_4.data);

            SIMD_STORE(_params + i, param_4.data);

            if (dev_params) SIMD_STORE(_doubled_buffer[_buf_index] + (i - t), param_4.data);

            SIMD_STORE(_exp_avg + i, momentum_4.data);
            SIMD_STORE(_exp_avg_sq + i, variance_4.data);
        }
        if (dev_params) {
            launch_param_update(_doubled_buffer[_buf_index],
                                dev_params + t,
                                copy_size,
                                Context::Instance().GetCurrentStream());
            _buf_index = !_buf_index;
        }
    }

#endif

    if (_param_size > rounded_size) {
#pragma omp parallel for
        for (size_t k = rounded_size; k < _param_size; k++) {
            float grad = grads[k];
            float param = _params[k];
            float momentum = _exp_avg[k];
            float variance = _exp_avg_sq[k];
121
            if (_weight_decay > 0 && !_adamw_mode) { grad = param * _weight_decay + grad; }
122
            momentum = momentum * _betta1;
Jeff Rasley's avatar
Jeff Rasley committed
123
124
125
126
127
128
129
            momentum = grad * betta1_minus1 + momentum;

            variance = variance * _betta2;
            grad = grad * grad;
            variance = grad * betta2_minus1 + variance;

            grad = sqrt(variance);
130
            grad = grad * _bias_correction2 + _eps;
Jeff Rasley's avatar
Jeff Rasley committed
131
            grad = momentum / grad;
132
            if (_weight_decay > 0 && _adamw_mode) { param += w_decay * param; }
Jeff Rasley's avatar
Jeff Rasley committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            param = grad * step_size + param;
            if (dev_params) _doubled_buffer[_buf_index][k - rounded_size] = (__half)param;

            _params[k] = param;
            _exp_avg[k] = momentum;
            _exp_avg_sq[k] = variance;
        }
        if (dev_params) {
            launch_param_update(_doubled_buffer[_buf_index],
                                dev_params + rounded_size,
                                (_param_size - rounded_size),
                                Context::Instance().GetCurrentStream());
        }
    }
}

void Adam_Optimizer::Step_4(float* _params,
                            float* grads,
                            float* _exp_avg,
                            float* _exp_avg_sq,
                            size_t _param_size,
                            __half* dev_params)
{
    size_t rounded_size = 0;

#if defined(__AVX512__) or defined(__AVX256__)

    AVX_Data betta1_4;
    betta1_4.data = SIMD_SET(_betta1);
    AVX_Data betta2_4;
    betta2_4.data = SIMD_SET(_betta2);

    float betta1_minus1 = 1 - _betta1;
    float betta2_minus1 = 1 - _betta2;
    AVX_Data betta1_minus1_4;
    betta1_minus1_4.data = SIMD_SET(betta1_minus1);
    AVX_Data betta2_minus1_4;
    betta2_minus1_4.data = SIMD_SET(betta2_minus1);

    AVX_Data bias2_sqrt;
173
    bias2_sqrt.data = SIMD_SET(_bias_correction2);
Jeff Rasley's avatar
Jeff Rasley committed
174
175
176
177

    AVX_Data eps_4;
    eps_4.data = SIMD_SET(_eps);

178
    float step_size = -1 * _alpha / _bias_correction1;
Jeff Rasley's avatar
Jeff Rasley committed
179
180
181
    AVX_Data step_size_4;
    step_size_4.data = SIMD_SET(step_size);

182
183
184
185
    float w_decay = -1 * _alpha * _weight_decay;
    AVX_Data weight_decay4;
    if (_weight_decay > 0)
        weight_decay4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
Jeff Rasley's avatar
Jeff Rasley committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    rounded_size = ROUND_DOWN(_param_size, (SIMD_WIDTH << 2));

    for (size_t t = 0; t < rounded_size; t += TILE) {
        size_t copy_size = TILE;
        if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
        size_t offset = copy_size + t;
#pragma omp parallel for
        for (size_t i = t; i < offset; i += (SIMD_WIDTH << 2)) {
            AVX_Data grad_4[4];
            grad_4[0].data = SIMD_LOAD(grads + i);
            grad_4[1].data = SIMD_LOAD(grads + i + SIMD_WIDTH);
            grad_4[2].data = SIMD_LOAD(grads + i + (SIMD_WIDTH << 1));
            grad_4[3].data = SIMD_LOAD(grads + i + SIMD_WIDTH * 3);

            AVX_Data momentum_4[4];
            momentum_4[0].data = SIMD_LOAD(_exp_avg + i);
            momentum_4[1].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH);
            momentum_4[2].data = SIMD_LOAD(_exp_avg + i + (SIMD_WIDTH << 1));
            momentum_4[3].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * 3);

            AVX_Data variance_4[4];
            variance_4[0].data = SIMD_LOAD(_exp_avg_sq + i);
            variance_4[1].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH);
            variance_4[2].data = SIMD_LOAD(_exp_avg_sq + i + (SIMD_WIDTH << 1));
            variance_4[3].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * 3);

            AVX_Data param_4[4];
            param_4[0].data = SIMD_LOAD(_params + i);
            param_4[1].data = SIMD_LOAD(_params + i + SIMD_WIDTH);
            param_4[2].data = SIMD_LOAD(_params + i + (SIMD_WIDTH << 1));
            param_4[3].data = SIMD_LOAD(_params + i + SIMD_WIDTH * 3);

218
            if (_weight_decay > 0 && !_adamw_mode) {
Jeff Rasley's avatar
Jeff Rasley committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
                grad_4[0].data = SIMD_FMA(param_4[0].data, weight_decay4.data, grad_4[0].data);
                grad_4[1].data = SIMD_FMA(param_4[1].data, weight_decay4.data, grad_4[1].data);
                grad_4[2].data = SIMD_FMA(param_4[2].data, weight_decay4.data, grad_4[2].data);
                grad_4[3].data = SIMD_FMA(param_4[3].data, weight_decay4.data, grad_4[3].data);
            }

            momentum_4[0].data = SIMD_MUL(momentum_4[0].data, betta1_4.data);
            momentum_4[0].data = SIMD_FMA(grad_4[0].data, betta1_minus1_4.data, momentum_4[0].data);
            momentum_4[1].data = SIMD_MUL(momentum_4[1].data, betta1_4.data);
            momentum_4[1].data = SIMD_FMA(grad_4[1].data, betta1_minus1_4.data, momentum_4[1].data);
            momentum_4[2].data = SIMD_MUL(momentum_4[2].data, betta1_4.data);
            momentum_4[2].data = SIMD_FMA(grad_4[2].data, betta1_minus1_4.data, momentum_4[2].data);
            momentum_4[3].data = SIMD_MUL(momentum_4[3].data, betta1_4.data);
            momentum_4[3].data = SIMD_FMA(grad_4[3].data, betta1_minus1_4.data, momentum_4[3].data);

            variance_4[0].data = SIMD_MUL(variance_4[0].data, betta2_4.data);
            variance_4[1].data = SIMD_MUL(variance_4[1].data, betta2_4.data);
            variance_4[2].data = SIMD_MUL(variance_4[2].data, betta2_4.data);
            variance_4[3].data = SIMD_MUL(variance_4[3].data, betta2_4.data);
            grad_4[0].data = SIMD_MUL(grad_4[0].data, grad_4[0].data);
            grad_4[1].data = SIMD_MUL(grad_4[1].data, grad_4[1].data);
            grad_4[2].data = SIMD_MUL(grad_4[2].data, grad_4[2].data);
            grad_4[3].data = SIMD_MUL(grad_4[3].data, grad_4[3].data);
            variance_4[0].data = SIMD_FMA(grad_4[0].data, betta2_minus1_4.data, variance_4[0].data);
            variance_4[1].data = SIMD_FMA(grad_4[1].data, betta2_minus1_4.data, variance_4[1].data);
            variance_4[2].data = SIMD_FMA(grad_4[2].data, betta2_minus1_4.data, variance_4[2].data);
            variance_4[3].data = SIMD_FMA(grad_4[3].data, betta2_minus1_4.data, variance_4[3].data);

            grad_4[0].data = SIMD_SQRT(variance_4[0].data);
            grad_4[1].data = SIMD_SQRT(variance_4[1].data);
            grad_4[2].data = SIMD_SQRT(variance_4[2].data);
            grad_4[3].data = SIMD_SQRT(variance_4[3].data);

            grad_4[0].data = SIMD_FMA(grad_4[0].data, bias2_sqrt.data, eps_4.data);
            grad_4[1].data = SIMD_FMA(grad_4[1].data, bias2_sqrt.data, eps_4.data);
            grad_4[2].data = SIMD_FMA(grad_4[2].data, bias2_sqrt.data, eps_4.data);
            grad_4[3].data = SIMD_FMA(grad_4[3].data, bias2_sqrt.data, eps_4.data);
            grad_4[0].data = SIMD_DIV(momentum_4[0].data, grad_4[0].data);
            grad_4[1].data = SIMD_DIV(momentum_4[1].data, grad_4[1].data);
            grad_4[2].data = SIMD_DIV(momentum_4[2].data, grad_4[2].data);
            grad_4[3].data = SIMD_DIV(momentum_4[3].data, grad_4[3].data);

261
262
263
264
265
266
267
            if (_weight_decay > 0 && _adamw_mode) {
                param_4[0].data = SIMD_FMA(param_4[0].data, weight_decay4.data, param_4[0].data);
                param_4[1].data = SIMD_FMA(param_4[1].data, weight_decay4.data, param_4[1].data);
                param_4[2].data = SIMD_FMA(param_4[2].data, weight_decay4.data, param_4[2].data);
                param_4[3].data = SIMD_FMA(param_4[3].data, weight_decay4.data, param_4[3].data);
            }

Jeff Rasley's avatar
Jeff Rasley committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
            param_4[0].data = SIMD_FMA(grad_4[0].data, step_size_4.data, param_4[0].data);
            param_4[1].data = SIMD_FMA(grad_4[1].data, step_size_4.data, param_4[1].data);
            param_4[2].data = SIMD_FMA(grad_4[2].data, step_size_4.data, param_4[2].data);
            param_4[3].data = SIMD_FMA(grad_4[3].data, step_size_4.data, param_4[3].data);

            SIMD_STORE(_params + i, param_4[0].data);
            SIMD_STORE(_params + i + SIMD_WIDTH, param_4[1].data);
            SIMD_STORE(_params + i + (SIMD_WIDTH << 1), param_4[2].data);
            SIMD_STORE(_params + i + SIMD_WIDTH * 3, param_4[3].data);

            if (dev_params) {
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t), param_4[0].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + SIMD_WIDTH, param_4[1].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + (SIMD_WIDTH << 1),
                           param_4[2].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + SIMD_WIDTH * 3, param_4[3].data);
            }

            SIMD_STORE(_exp_avg + i, momentum_4[0].data);
            SIMD_STORE(_exp_avg + i + SIMD_WIDTH, momentum_4[1].data);
            SIMD_STORE(_exp_avg + i + (SIMD_WIDTH << 1), momentum_4[2].data);
            SIMD_STORE(_exp_avg + i + SIMD_WIDTH * 3, momentum_4[3].data);

            SIMD_STORE(_exp_avg_sq + i, variance_4[0].data);
            SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH, variance_4[1].data);
            SIMD_STORE(_exp_avg_sq + i + (SIMD_WIDTH << 1), variance_4[2].data);
            SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * 3, variance_4[3].data);
        }

        if (dev_params) {
            launch_param_update(_doubled_buffer[_buf_index],
                                dev_params + t,
                                copy_size,
                                Context::Instance().GetCurrentStream());
            _buf_index = !_buf_index;
        }
    }
#endif
    if (_param_size > rounded_size)
        Step((_params + rounded_size),
             (grads + rounded_size),
             (_exp_avg + rounded_size),
             (_exp_avg_sq + rounded_size),
             (_param_size - rounded_size),
             (dev_params != nullptr ? (dev_params + rounded_size) : dev_params));
}

int create_adam_optimizer(int optimizer_id,
                          float alpha = 1e-3,
                          float betta1 = 0.9,
                          float betta2 = 0.999,
                          float eps = 1e-8,
320
321
                          float weight_decay = 0,
                          bool adamw_mode = true)
Jeff Rasley's avatar
Jeff Rasley committed
322
{
323
324
    auto opt =
        std::make_shared<Adam_Optimizer>(alpha, betta1, betta2, eps, weight_decay, adamw_mode);
Jeff Rasley's avatar
Jeff Rasley committed
325
326
327
328
329

    s_optimizers[optimizer_id] = opt;
#if defined(__AVX512__)
    std::cout << "Adam Optimizer #" << optimizer_id
              << " is created with AVX512 arithmetic capability." << std::endl;
330
331
332
333
334
335
    printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
           alpha,
           betta1,
           betta2,
           weight_decay,
           (int)adamw_mode);
Jeff Rasley's avatar
Jeff Rasley committed
336
337
338
339
#else
#if defined(__AVX256__)
    std::cout << "Adam Optimizer #" << optimizer_id
              << " is created with AVX2 arithmetic capability." << std::endl;
340
341
342
343
344
345
    printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
           alpha,
           betta1,
           betta2,
           weight_decay,
           (int)adamw_mode);
Jeff Rasley's avatar
Jeff Rasley committed
346
347
348
#else
    std::cout << "Adam Optimizer #" << optimizer_id
              << " is created with scalar arithmetic capability." << std::endl;
349
350
351
352
353
354
    printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
           alpha,
           betta1,
           betta2,
           weight_decay,
           (int)adamw_mode);
Jeff Rasley's avatar
Jeff Rasley committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#endif
#endif
    return 0;
}

void Adam_Optimizer::Step_8(float* _params,
                            float* grads,
                            float* _exp_avg,
                            float* _exp_avg_sq,
                            size_t _param_size,
                            __half* dev_params)
{
    size_t rounded_size = 0;

#if defined(__AVX512__) or defined(__AVX256__)

    AVX_Data betta1_4;
    betta1_4.data = SIMD_SET(_betta1);
    AVX_Data betta2_4;
    betta2_4.data = SIMD_SET(_betta2);

    float betta1_minus1 = 1 - _betta1;
    float betta2_minus1 = 1 - _betta2;
    AVX_Data betta1_minus1_4;
    betta1_minus1_4.data = SIMD_SET(betta1_minus1);
    AVX_Data betta2_minus1_4;
    betta2_minus1_4.data = SIMD_SET(betta2_minus1);

    AVX_Data bias2_sqrt;
384
    bias2_sqrt.data = SIMD_SET(_bias_correction2);
Jeff Rasley's avatar
Jeff Rasley committed
385
386
387
388

    AVX_Data eps_4;
    eps_4.data = SIMD_SET(_eps);

389
    float step_size = -1 * _alpha / _bias_correction1;
Jeff Rasley's avatar
Jeff Rasley committed
390
391
392
    AVX_Data step_size_4;
    step_size_4.data = SIMD_SET(step_size);

393
394
395
    float w_decay = -1 * _alpha * _weight_decay;
    AVX_Data weight_decay4;
    if (_weight_decay > 0)
396
        weight_decay4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
Jeff Rasley's avatar
Jeff Rasley committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    rounded_size = ROUND_DOWN(_param_size, (SIMD_WIDTH << 3));

    for (size_t t = 0; t < rounded_size; t += TILE) {
        size_t copy_size = TILE;
        if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
        size_t offset = copy_size + t;
#pragma omp parallel for
        for (size_t i = t; i < offset; i += (SIMD_WIDTH << 3)) {
            AVX_Data grad_4[8];
            grad_4[0].data = SIMD_LOAD(grads + i);
            grad_4[1].data = SIMD_LOAD(grads + i + SIMD_WIDTH);
            grad_4[2].data = SIMD_LOAD(grads + i + (SIMD_WIDTH << 1));
            grad_4[3].data = SIMD_LOAD(grads + i + SIMD_WIDTH * 3);
            grad_4[4].data = SIMD_LOAD(grads + i + (SIMD_WIDTH << 2));
            grad_4[5].data = SIMD_LOAD(grads + i + SIMD_WIDTH * 5);
            grad_4[6].data = SIMD_LOAD(grads + i + SIMD_WIDTH * 6);
            grad_4[7].data = SIMD_LOAD(grads + i + SIMD_WIDTH * 7);

            AVX_Data momentum_4[8];
            momentum_4[0].data = SIMD_LOAD(_exp_avg + i);
            momentum_4[1].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH);
            momentum_4[2].data = SIMD_LOAD(_exp_avg + i + (SIMD_WIDTH << 1));
            momentum_4[3].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * 3);
            momentum_4[4].data = SIMD_LOAD(_exp_avg + i + (SIMD_WIDTH << 2));
            momentum_4[5].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * 5);
            momentum_4[6].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * 6);
            momentum_4[7].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * 7);

            AVX_Data variance_4[8];
            variance_4[0].data = SIMD_LOAD(_exp_avg_sq + i);
            variance_4[1].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH);
            variance_4[2].data = SIMD_LOAD(_exp_avg_sq + i + (SIMD_WIDTH << 1));
            variance_4[3].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * 3);
            variance_4[4].data = SIMD_LOAD(_exp_avg_sq + i + (SIMD_WIDTH << 2));
            variance_4[5].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * 5);
            variance_4[6].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * 6);
            variance_4[7].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * 7);

            AVX_Data param_4[8];
            param_4[0].data = SIMD_LOAD(_params + i);
            param_4[1].data = SIMD_LOAD(_params + i + SIMD_WIDTH);
            param_4[2].data = SIMD_LOAD(_params + i + (SIMD_WIDTH << 1));
            param_4[3].data = SIMD_LOAD(_params + i + SIMD_WIDTH * 3);
            param_4[4].data = SIMD_LOAD(_params + i + (SIMD_WIDTH << 2));
            param_4[5].data = SIMD_LOAD(_params + i + SIMD_WIDTH * 5);
            param_4[6].data = SIMD_LOAD(_params + i + SIMD_WIDTH * 6);
            param_4[7].data = SIMD_LOAD(_params + i + SIMD_WIDTH * 7);

445
            if (_weight_decay > 0 && !_adamw_mode) {
Jeff Rasley's avatar
Jeff Rasley committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
                grad_4[0].data = SIMD_FMA(param_4[0].data, weight_decay4.data, grad_4[0].data);
                grad_4[1].data = SIMD_FMA(param_4[1].data, weight_decay4.data, grad_4[1].data);
                grad_4[2].data = SIMD_FMA(param_4[2].data, weight_decay4.data, grad_4[2].data);
                grad_4[3].data = SIMD_FMA(param_4[3].data, weight_decay4.data, grad_4[3].data);
                grad_4[4].data = SIMD_FMA(param_4[4].data, weight_decay4.data, grad_4[4].data);
                grad_4[5].data = SIMD_FMA(param_4[5].data, weight_decay4.data, grad_4[5].data);
                grad_4[6].data = SIMD_FMA(param_4[6].data, weight_decay4.data, grad_4[6].data);
                grad_4[7].data = SIMD_FMA(param_4[7].data, weight_decay4.data, grad_4[7].data);
            }

            momentum_4[0].data = SIMD_MUL(momentum_4[0].data, betta1_4.data);
            momentum_4[0].data = SIMD_FMA(grad_4[0].data, betta1_minus1_4.data, momentum_4[0].data);
            momentum_4[1].data = SIMD_MUL(momentum_4[1].data, betta1_4.data);
            momentum_4[1].data = SIMD_FMA(grad_4[1].data, betta1_minus1_4.data, momentum_4[1].data);
            momentum_4[2].data = SIMD_MUL(momentum_4[2].data, betta1_4.data);
            momentum_4[2].data = SIMD_FMA(grad_4[2].data, betta1_minus1_4.data, momentum_4[2].data);
            momentum_4[3].data = SIMD_MUL(momentum_4[3].data, betta1_4.data);
            momentum_4[3].data = SIMD_FMA(grad_4[3].data, betta1_minus1_4.data, momentum_4[3].data);
            momentum_4[4].data = SIMD_MUL(momentum_4[4].data, betta1_4.data);
            momentum_4[4].data = SIMD_FMA(grad_4[4].data, betta1_minus1_4.data, momentum_4[4].data);
            momentum_4[5].data = SIMD_MUL(momentum_4[5].data, betta1_4.data);
            momentum_4[5].data = SIMD_FMA(grad_4[5].data, betta1_minus1_4.data, momentum_4[5].data);
            momentum_4[6].data = SIMD_MUL(momentum_4[6].data, betta1_4.data);
            momentum_4[6].data = SIMD_FMA(grad_4[6].data, betta1_minus1_4.data, momentum_4[6].data);
            momentum_4[7].data = SIMD_MUL(momentum_4[7].data, betta1_4.data);
            momentum_4[7].data = SIMD_FMA(grad_4[7].data, betta1_minus1_4.data, momentum_4[7].data);

            variance_4[0].data = SIMD_MUL(variance_4[0].data, betta2_4.data);
            variance_4[1].data = SIMD_MUL(variance_4[1].data, betta2_4.data);
            variance_4[2].data = SIMD_MUL(variance_4[2].data, betta2_4.data);
            variance_4[3].data = SIMD_MUL(variance_4[3].data, betta2_4.data);
            variance_4[4].data = SIMD_MUL(variance_4[4].data, betta2_4.data);
            variance_4[5].data = SIMD_MUL(variance_4[5].data, betta2_4.data);
            variance_4[6].data = SIMD_MUL(variance_4[6].data, betta2_4.data);
            variance_4[7].data = SIMD_MUL(variance_4[7].data, betta2_4.data);
            grad_4[0].data = SIMD_MUL(grad_4[0].data, grad_4[0].data);
            grad_4[1].data = SIMD_MUL(grad_4[1].data, grad_4[1].data);
            grad_4[2].data = SIMD_MUL(grad_4[2].data, grad_4[2].data);
            grad_4[3].data = SIMD_MUL(grad_4[3].data, grad_4[3].data);
            grad_4[4].data = SIMD_MUL(grad_4[4].data, grad_4[4].data);
            grad_4[5].data = SIMD_MUL(grad_4[5].data, grad_4[5].data);
            grad_4[6].data = SIMD_MUL(grad_4[6].data, grad_4[6].data);
            grad_4[7].data = SIMD_MUL(grad_4[7].data, grad_4[7].data);
            variance_4[0].data = SIMD_FMA(grad_4[0].data, betta2_minus1_4.data, variance_4[0].data);
            variance_4[1].data = SIMD_FMA(grad_4[1].data, betta2_minus1_4.data, variance_4[1].data);
            variance_4[2].data = SIMD_FMA(grad_4[2].data, betta2_minus1_4.data, variance_4[2].data);
            variance_4[3].data = SIMD_FMA(grad_4[3].data, betta2_minus1_4.data, variance_4[3].data);
            variance_4[4].data = SIMD_FMA(grad_4[4].data, betta2_minus1_4.data, variance_4[4].data);
            variance_4[5].data = SIMD_FMA(grad_4[5].data, betta2_minus1_4.data, variance_4[5].data);
            variance_4[6].data = SIMD_FMA(grad_4[6].data, betta2_minus1_4.data, variance_4[6].data);
            variance_4[7].data = SIMD_FMA(grad_4[7].data, betta2_minus1_4.data, variance_4[7].data);

            grad_4[0].data = SIMD_SQRT(variance_4[0].data);
            grad_4[1].data = SIMD_SQRT(variance_4[1].data);
            grad_4[2].data = SIMD_SQRT(variance_4[2].data);
            grad_4[3].data = SIMD_SQRT(variance_4[3].data);
            grad_4[4].data = SIMD_SQRT(variance_4[4].data);
            grad_4[5].data = SIMD_SQRT(variance_4[5].data);
            grad_4[6].data = SIMD_SQRT(variance_4[6].data);
            grad_4[7].data = SIMD_SQRT(variance_4[7].data);

            grad_4[0].data = SIMD_FMA(grad_4[0].data, bias2_sqrt.data, eps_4.data);
            grad_4[1].data = SIMD_FMA(grad_4[1].data, bias2_sqrt.data, eps_4.data);
            grad_4[2].data = SIMD_FMA(grad_4[2].data, bias2_sqrt.data, eps_4.data);
            grad_4[3].data = SIMD_FMA(grad_4[3].data, bias2_sqrt.data, eps_4.data);
            grad_4[4].data = SIMD_FMA(grad_4[4].data, bias2_sqrt.data, eps_4.data);
            grad_4[5].data = SIMD_FMA(grad_4[5].data, bias2_sqrt.data, eps_4.data);
            grad_4[6].data = SIMD_FMA(grad_4[6].data, bias2_sqrt.data, eps_4.data);
            grad_4[7].data = SIMD_FMA(grad_4[7].data, bias2_sqrt.data, eps_4.data);
            grad_4[0].data = SIMD_DIV(momentum_4[0].data, grad_4[0].data);
            grad_4[1].data = SIMD_DIV(momentum_4[1].data, grad_4[1].data);
            grad_4[2].data = SIMD_DIV(momentum_4[2].data, grad_4[2].data);
            grad_4[3].data = SIMD_DIV(momentum_4[3].data, grad_4[3].data);
            grad_4[4].data = SIMD_DIV(momentum_4[4].data, grad_4[4].data);
            grad_4[5].data = SIMD_DIV(momentum_4[5].data, grad_4[5].data);
            grad_4[6].data = SIMD_DIV(momentum_4[6].data, grad_4[6].data);
            grad_4[7].data = SIMD_DIV(momentum_4[7].data, grad_4[7].data);

524
525
526
527
528
529
530
531
532
533
534
            if (_weight_decay > 0 && _adamw_mode) {
                param_4[0].data = SIMD_FMA(param_4[0].data, weight_decay4.data, param_4[0].data);
                param_4[1].data = SIMD_FMA(param_4[1].data, weight_decay4.data, param_4[1].data);
                param_4[2].data = SIMD_FMA(param_4[2].data, weight_decay4.data, param_4[2].data);
                param_4[3].data = SIMD_FMA(param_4[3].data, weight_decay4.data, param_4[3].data);
                param_4[4].data = SIMD_FMA(param_4[4].data, weight_decay4.data, param_4[4].data);
                param_4[5].data = SIMD_FMA(param_4[5].data, weight_decay4.data, param_4[5].data);
                param_4[6].data = SIMD_FMA(param_4[6].data, weight_decay4.data, param_4[6].data);
                param_4[7].data = SIMD_FMA(param_4[7].data, weight_decay4.data, param_4[7].data);
            }

Jeff Rasley's avatar
Jeff Rasley committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
            param_4[0].data = SIMD_FMA(grad_4[0].data, step_size_4.data, param_4[0].data);
            param_4[1].data = SIMD_FMA(grad_4[1].data, step_size_4.data, param_4[1].data);
            param_4[2].data = SIMD_FMA(grad_4[2].data, step_size_4.data, param_4[2].data);
            param_4[3].data = SIMD_FMA(grad_4[3].data, step_size_4.data, param_4[3].data);
            param_4[4].data = SIMD_FMA(grad_4[4].data, step_size_4.data, param_4[4].data);
            param_4[5].data = SIMD_FMA(grad_4[5].data, step_size_4.data, param_4[5].data);
            param_4[6].data = SIMD_FMA(grad_4[6].data, step_size_4.data, param_4[6].data);
            param_4[7].data = SIMD_FMA(grad_4[7].data, step_size_4.data, param_4[7].data);

            SIMD_STORE(_params + i, param_4[0].data);
            SIMD_STORE(_params + i + SIMD_WIDTH, param_4[1].data);
            SIMD_STORE(_params + i + (SIMD_WIDTH << 1), param_4[2].data);
            SIMD_STORE(_params + i + SIMD_WIDTH * 3, param_4[3].data);
            SIMD_STORE(_params + i + (SIMD_WIDTH << 2), param_4[4].data);
            SIMD_STORE(_params + i + SIMD_WIDTH * 5, param_4[5].data);
            SIMD_STORE(_params + i + SIMD_WIDTH * 6, param_4[6].data);
            SIMD_STORE(_params + i + SIMD_WIDTH * 7, param_4[7].data);

            if (dev_params) {
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t), param_4[0].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + SIMD_WIDTH, param_4[1].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + (SIMD_WIDTH << 1),
                           param_4[2].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + SIMD_WIDTH * 3, param_4[3].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + (SIMD_WIDTH << 2),
                           param_4[4].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + SIMD_WIDTH * 5, param_4[5].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + SIMD_WIDTH * 6, param_4[6].data);
                SIMD_STORE(_doubled_buffer[_buf_index] + (i - t) + SIMD_WIDTH * 7, param_4[7].data);
            }

            SIMD_STORE(_exp_avg + i, momentum_4[0].data);
            SIMD_STORE(_exp_avg + i + SIMD_WIDTH, momentum_4[1].data);
            SIMD_STORE(_exp_avg + i + (SIMD_WIDTH << 1), momentum_4[2].data);
            SIMD_STORE(_exp_avg + i + SIMD_WIDTH * 3, momentum_4[3].data);
            SIMD_STORE(_exp_avg + i + (SIMD_WIDTH << 2), momentum_4[4].data);
            SIMD_STORE(_exp_avg + i + SIMD_WIDTH * 5, momentum_4[5].data);
            SIMD_STORE(_exp_avg + i + SIMD_WIDTH * 6, momentum_4[6].data);
            SIMD_STORE(_exp_avg + i + SIMD_WIDTH * 7, momentum_4[7].data);

            SIMD_STORE(_exp_avg_sq + i, variance_4[0].data);
            SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH, variance_4[1].data);
            SIMD_STORE(_exp_avg_sq + i + (SIMD_WIDTH << 1), variance_4[2].data);
            SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * 3, variance_4[3].data);
            SIMD_STORE(_exp_avg_sq + i + (SIMD_WIDTH << 2), variance_4[4].data);
            SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * 5, variance_4[5].data);
            SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * 6, variance_4[6].data);
            SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * 7, variance_4[7].data);
        }
        if (dev_params) {
            launch_param_update(_doubled_buffer[_buf_index],
                                dev_params + t,
                                copy_size,
                                Context::Instance().GetCurrentStream());
            _buf_index = !_buf_index;
        }
    }
#endif
    if (_param_size > rounded_size)
        Step_4((_params + rounded_size),
               (grads + rounded_size),
               (_exp_avg + rounded_size),
               (_exp_avg_sq + rounded_size),
               (_param_size - rounded_size),
               (dev_params != nullptr ? (dev_params + rounded_size) : dev_params));
}

int ds_adam_step(int optimizer_id,
603
604
                 size_t step,
                 float lr,
605
606
607
608
609
                 float beta1,
                 float beta2,
                 float epsilon,
                 float weight_decay,
                 bool bias_correction,
Jeff Rasley's avatar
Jeff Rasley committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
                 torch::Tensor& params,
                 torch::Tensor& grads,
                 torch::Tensor& exp_avg,
                 torch::Tensor& exp_avg_sq)
{
    auto params_c = params.contiguous();
    auto grads_c = grads.contiguous();
    auto exp_avg_c = exp_avg.contiguous();
    auto exp_avg_sq_c = exp_avg_sq.contiguous();

    float* params_ptr = (float*)params_c.data_ptr();
    float* grads_ptr = (float*)grads_c.data_ptr();
    float* exp_avg_ptr = (float*)exp_avg_c.data_ptr();
    float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();

    std::shared_ptr<Adam_Optimizer> opt =
        std::static_pointer_cast<Adam_Optimizer>(s_optimizers[optimizer_id]);
627
628
    opt->IncrementStep(step, beta1, beta2);
    opt->update_state(lr, epsilon, weight_decay, bias_correction);
Jeff Rasley's avatar
Jeff Rasley committed
629
630
631
632
633
634
    opt->Step_8(params_ptr, grads_ptr, exp_avg_ptr, exp_avg_sq_ptr, params_c.size(0));

    return 0;
}

int ds_adam_step_plus_copy(int optimizer_id,
635
636
                           size_t step,
                           float lr,
637
638
639
640
641
                           float beta1,
                           float beta2,
                           float epsilon,
                           float weight_decay,
                           bool bias_correction,
Jeff Rasley's avatar
Jeff Rasley committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
                           torch::Tensor& params,
                           torch::Tensor& grads,
                           torch::Tensor& exp_avg,
                           torch::Tensor& exp_avg_sq,
                           torch::Tensor& gpu_params)
{
    auto params_c = params.contiguous();
    auto gpu_params_c = gpu_params.contiguous();
    auto exp_avg_c = exp_avg.contiguous();
    auto exp_avg_sq_c = exp_avg_sq.contiguous();
    auto grads_c = grads.contiguous();

    float* params_ptr = (float*)params_c.data_ptr();
    float* grads_ptr = (float*)grads_c.data_ptr();
    __half* gpu_params_ptr = (__half*)gpu_params_c.data_ptr();
    float* exp_avg_ptr = (float*)exp_avg_c.data_ptr();
    float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();

    std::shared_ptr<Adam_Optimizer> opt =
        std::static_pointer_cast<Adam_Optimizer>(s_optimizers[optimizer_id]);
662
663
    opt->IncrementStep(step, beta1, beta2);
    opt->update_state(lr, epsilon, weight_decay, bias_correction);
Jeff Rasley's avatar
Jeff Rasley committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    opt->Step_8(
        params_ptr, grads_ptr, exp_avg_ptr, exp_avg_sq_ptr, params_c.size(0), gpu_params_ptr);

    return 0;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
    m.def("adam_update", &ds_adam_step, "DeepSpeed CPU Adam update (C++)");
    m.def("adam_update_copy",
          &ds_adam_step_plus_copy,
          "DeepSpeed CPU Adam update and param copy (C++)");
    m.def("create_adam", &create_adam_optimizer, "DeepSpeed CPU Adam (C++)");
}