test_adam_acuracy.py 1.64 KB
Newer Older
Jeff Rasley's avatar
Jeff Rasley committed
1
2
3
4
5
6
7
8
import argparse
import torch

import time
import numpy as np
import pytest
import copy

9
import deepspeed
Jeff Rasley's avatar
Jeff Rasley committed
10
11
from deepspeed.ops.adam import DeepSpeedCPUAdam

12
13
14
if not deepspeed.ops.__installed_ops__['cpu-adam']:
    pytest.skip("cpu-adam is not installed", allow_module_level=True)

Jeff Rasley's avatar
Jeff Rasley committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

def check_equal(first, second, atol=1e-2, verbose=False):
    x = first.detach().numpy()
    y = second.detach().numpy()
    if verbose:
        print("x = {}".format(x.flatten()))
        print("y = {}".format(y.flatten()))
        print('-' * 80)
    np.testing.assert_allclose(x, y, err_msg="param-update dismatch!", atol=atol)

@pytest.mark.parametrize('model_size',
                         [
                             (64),
                             (22),
                             (55),
                             (127),
                             (1024),
                             (1048576),
                         ]) # yapf: disable
def test_adam_opt(model_size):
    device = 'cpu'
    rng_state = torch.get_rng_state()
    param = torch.nn.Parameter(torch.randn(model_size, device=device))
    torch.set_rng_state(rng_state)
    param1 = torch.nn.Parameter(torch.randn(model_size, device=device))

    optimizer1 = torch.optim.Adam([param1])
    optimizer = DeepSpeedCPUAdam([param])

    for i in range(10):
        rng_state = torch.get_rng_state()
        param.grad = torch.randn(model_size, device=device)
        torch.set_rng_state(rng_state)
        param1.grad = torch.randn(model_size, device=device)

        optimizer.step()
        optimizer1.step()

    check_equal(param, param1, atol=1e-2, verbose=True)