test_config.py 6.9 KB
Newer Older
Elton Zheng's avatar
Elton Zheng committed
1
2
# A test on its own
import torch
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
3
import pytest
4
5
import json
import argparse
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
6
from common import distributed_test
7
from simple_model import SimpleModel, create_config_from_dict, random_dataloader
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
8
import torch.distributed as dist
Elton Zheng's avatar
Elton Zheng committed
9
10
11

# A test on its own
import deepspeed
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
12
from deepspeed.pt.deepspeed_config import DeepSpeedConfig
Elton Zheng's avatar
Elton Zheng committed
13
14
15
16


def test_cuda():
    assert (torch.cuda.is_available())
Jeff Rasley's avatar
Jeff Rasley committed
17
18
19
20
21
22


def test_check_version():
    assert hasattr(deepspeed, "__git_hash__")
    assert hasattr(deepspeed, "__git_branch__")
    assert hasattr(deepspeed, "__version__")
23
24
25
    assert hasattr(deepspeed, "__version_major__")
    assert hasattr(deepspeed, "__version_minor__")
    assert hasattr(deepspeed, "__version_patch__")
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105


def _run_batch_config(ds_config, train_batch=None, micro_batch=None, gas=None):
    ds_config.train_batch_size = train_batch
    ds_config.train_micro_batch_size_per_gpu = micro_batch
    ds_config.gradient_accumulation_steps = gas
    success = True
    try:
        ds_config._configure_train_batch_size()
    except AssertionError:
        success = False
    return success


def _batch_assert(status, ds_config, batch, micro_batch, gas, success):

    if not success:
        assert not status
        print("Failed but All is well")
        return

    assert ds_config.train_batch_size == batch
    assert ds_config.train_micro_batch_size_per_gpu == micro_batch
    assert ds_config.gradient_accumulation_steps == gas
    print("All is well")


#Tests different batch config provided in deepspeed json file
@pytest.mark.parametrize('num_ranks,batch,micro_batch,gas,success',
                         [(2,32,16,1,True),
                         (2,32,8,2,True),
                         (2,33,17,2,False),
                         (2,32,18,1,False)]) # yapf: disable
def test_batch_config(num_ranks, batch, micro_batch, gas, success):
    @distributed_test(world_size=2)
    def _test_batch_config(num_ranks, batch, micro_batch, gas, success):
        assert dist.get_world_size() == num_ranks, \
        'The test assumes a world size of f{num_ranks}'

        ds_batch_config = 'tests/unit/ds_batch_config.json'
        ds_config = DeepSpeedConfig(ds_batch_config)

        #test cases when all parameters are provided
        status = _run_batch_config(ds_config,
                                   train_batch=batch,
                                   micro_batch=micro_batch,
                                   gas=gas)
        _batch_assert(status, ds_config, batch, micro_batch, gas, success)

        #test cases when two out of three parameters are provided
        status = _run_batch_config(ds_config, train_batch=batch, micro_batch=micro_batch)
        _batch_assert(status, ds_config, batch, micro_batch, gas, success)

        if success:
            #when gas is provided with one more parameter
            status = _run_batch_config(ds_config, train_batch=batch, gas=gas)
            _batch_assert(status, ds_config, batch, micro_batch, gas, success)

            status = _run_batch_config(ds_config, micro_batch=micro_batch, gas=gas)
            _batch_assert(status, ds_config, batch, micro_batch, gas, success)

            #test the case when only micro_batch or train_batch is provided
            if gas == 1:
                status = _run_batch_config(ds_config, micro_batch=micro_batch)
                _batch_assert(status, ds_config, batch, micro_batch, gas, success)

                status = _run_batch_config(ds_config, train_batch=batch)
                _batch_assert(status, ds_config, batch, micro_batch, gas, success)
        else:
            #when only gas is provided
            status = _run_batch_config(ds_config, gas=gas)
            _batch_assert(status, ds_config, batch, micro_batch, gas, success)

            #when gas is provided with something else and gas does not divide batch
            if gas != 1:
                status = _run_batch_config(ds_config, train_batch=batch, gas=gas)
                _batch_assert(status, ds_config, batch, micro_batch, gas, success)

    """Run batch config test """
    _test_batch_config(num_ranks, batch, micro_batch, gas, success)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144


def test_temp_config_json(tmpdir):
    config_dict = {
        "train_batch_size": 1,
    }
    config_path = create_config_from_dict(tmpdir, config_dict)
    config_json = json.load(open(config_path, 'r'))
    assert 'train_batch_size' in config_json


def test_deprecated_deepscale_config(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    config_path = create_config_from_dict(tmpdir, config_dict)
    parser = argparse.ArgumentParser()
    args = parser.parse_args(args='')
    args.deepscale_config = config_path
    args.local_rank = 0

    hidden_dim = 10

    model = SimpleModel(hidden_dim)

    @distributed_test(world_size=[1])
    def _test_deprecated_deepscale_config(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
145
                                             model_parameters=model.parameters())
146
147
148
149
150
151
152
153
154
155
        data_loader = random_dataloader(model=model,
                                        total_samples=5,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_deprecated_deepscale_config(args=args, model=model, hidden_dim=hidden_dim)
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197


def test_dist_init_true(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    config_path = create_config_from_dict(tmpdir, config_dict)
    parser = argparse.ArgumentParser()
    args = parser.parse_args(args='')
    args.deepscale_config = config_path
    args.local_rank = 0

    hidden_dim = 10

    model = SimpleModel(hidden_dim)

    @distributed_test(world_size=[1])
    def _test_dist_init_true(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters(),
                                             dist_init_required=True)
        data_loader = random_dataloader(model=model,
                                        total_samples=5,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _test_dist_init_true(args=args, model=model, hidden_dim=hidden_dim)