test_data.py 2.13 KB
Newer Older
1
from deepspeed.utils import RepeatingLoader
aiss's avatar
aiss committed
2
3
4
5
6
import torch
import pytest
import deepspeed
from .common import distributed_test
from .simple_model import SimpleModel, args_from_dict, random_dataset
7
8
9
10
11
12
13
14
15
16


def test_repeating_loader():
    loader = [1, 2, 3]
    loader = RepeatingLoader(loader)

    for idx in range(50):
        assert next(loader) == 1
        assert next(loader) == 2
        assert next(loader) == 3
aiss's avatar
aiss committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


@pytest.mark.parametrize('train_batch_size, drop_last',
                         [(1,
                           True),
                          (4,
                           True),
                          (1,
                           False),
                          (4,
                           False)])
def test_dataloader_drop_last(tmpdir, train_batch_size, drop_last):
    config_dict = {
        "train_batch_size": train_batch_size,
        "dataloader_drop_last": drop_last,
        "steps_per_print": 1
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim)

    @distributed_test(world_size=[1])
    def _test_dataloader_drop_last(args, model, hidden_dim):
        optimizer = torch.optim.AdamW(params=model.parameters())
        #TODO: Figure out why this breaks with cuda device
        train_dataset = random_dataset(total_samples=50,
                                       hidden_dim=hidden_dim,
                                       device=torch.device('cpu'),
                                       dtype=torch.float32)
        model, _, training_dataloader, _ = deepspeed.initialize(args=args,
                                                                model=model,
                                                                training_data=train_dataset,
                                                                optimizer=optimizer)
        for n, batch in enumerate(training_dataloader):
            x = batch[0].to(torch.cuda.current_device())
            y = batch[1].to(torch.cuda.current_device())
            loss = model(x, y)
            model.backward(loss)
            model.step()

    _test_dataloader_drop_last(args=args, model=model, hidden_dim=hidden_dim)