simple_model.py 9.76 KB
Newer Older
1
2
3
4
5
import os
import json
import argparse
import torch

6
from deepspeed.pipe import PipelineModule, LayerSpec
aiss's avatar
aiss committed
7
from deepspeed.moe.layer import MoE
8

9
10

class SimpleModel(torch.nn.Module):
aiss's avatar
aiss committed
11
    def __init__(self, hidden_dim, empty_grad=False, nlayers=1):
12
        super(SimpleModel, self).__init__()
aiss's avatar
aiss committed
13
14
15
        self.linears = torch.nn.ModuleList(
            [torch.nn.Linear(hidden_dim,
                             hidden_dim) for i in range(nlayers)])
16
        if empty_grad:
Jeff Rasley's avatar
Jeff Rasley committed
17
            self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
18
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
Jeff Rasley's avatar
Jeff Rasley committed
19
        self.empty_grad = empty_grad
20
21

    def forward(self, x, y):
aiss's avatar
aiss committed
22
23
        if len(self.linears) == 1:
            x = self.linears[0](x)
Jeff Rasley's avatar
Jeff Rasley committed
24
        else:
aiss's avatar
aiss committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            for i, l in enumerate(self.linears):
                x = self.linears[i // 2](x) + l(x)
        return self.cross_entropy_loss(x, y)


class Curriculum_SimpleModel(SimpleModel):
    def __init__(self, hidden_dim, empty_grad=False):
        super(Curriculum_SimpleModel, self).__init__(hidden_dim, empty_grad)

    def forward(self, x, y, **kwargs):
        seqlen = kwargs.get('curriculum_seqlen', None)
        loss = super(Curriculum_SimpleModel, self).forward(x, y)
        return loss, seqlen


class SimpleMoEModel(torch.nn.Module):
    def __init__(self, hidden_dim, num_experts=4, ep_size=1, use_residual=False):
        super(SimpleMoEModel, self).__init__()
        self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
        linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
        self.linear2 = MoE(hidden_size=hidden_dim,
                           expert=linear2,
                           ep_size=ep_size,
                           use_residual=use_residual,
                           num_experts=num_experts,
                           k=1)
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()

    def forward(self, x, y):
        hidden_dim = x
        hidden_dim = self.linear(hidden_dim)
        output, _, _ = self.linear2(hidden_dim)
        hidden_dim = hidden_dim + output
        sentence_embed = hidden_dim.mean(1)
        return self.cross_entropy_loss(sentence_embed, y)


class SimplePRMoEModel(torch.nn.Module):
    def __init__(self, hidden_dim, num_experts=2, ep_size=1, use_residual=False):
        super(SimplePRMoEModel, self).__init__()
        self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
        linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
        self.linear2 = MoE(hidden_size=hidden_dim,
                           expert=linear2,
                           ep_size=ep_size,
                           use_residual=use_residual,
                           num_experts=num_experts,
                           k=1)
        linear3 = torch.nn.Linear(hidden_dim, hidden_dim)
        self.linear3 = MoE(hidden_size=hidden_dim,
                           expert=linear3,
                           ep_size=ep_size,
                           use_residual=use_residual,
                           num_experts=int(2 * num_experts),
                           k=1)
        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()

    def forward(self, x, y):
        hidden_dim = x
        hidden_dim = self.linear(hidden_dim)
        output, _, _ = self.linear2(hidden_dim)
        output, _, _ = self.linear3(output)
        hidden_dim = hidden_dim + output
        sentence_embed = hidden_dim.mean(1)
        return self.cross_entropy_loss(sentence_embed, y)


class UnusedParametersModel(SimpleModel):
    def __init__(self, hidden_dim, empty_grad=False):
        super().__init__(hidden_dim, empty_grad)

        self.unused_linear = torch.nn.Linear(hidden_dim, hidden_dim)
97
98


99
100
101
102
103
104
105
class LinearStack(torch.nn.Module):
    def __init__(self, input_dim=128, hidden_dim=128, output_dim=128, num_layers=4):
        super().__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim

106
107
        self.input_layer = torch.nn.Linear(in_features=self.input_dim,
                                           out_features=self.hidden_dim)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        self.layers = torch.nn.ModuleList([
            torch.nn.Linear(in_features=self.hidden_dim,
                            out_features=self.hidden_dim,
                            bias=False) for x in range(num_layers)
        ])
        self.output_layer = torch.nn.Linear(in_features=self.hidden_dim,
                                            out_features=self.output_dim)

        self.cross_entropy_loss = torch.nn.CrossEntropyLoss()

    def forward(self, x, y):
        x = self.input_layer(x)
        for layer in self.layers:
            x = layer(x)
        x = self.output_layer(x)
        return x


class LinearStackPipe(PipelineModule):
    def __init__(self,
                 input_dim=128,
                 hidden_dim=128,
                 output_dim=128,
                 num_layers=4,
                 **kwargs):
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.hidden_dim = hidden_dim
        self.num_layers = num_layers

        layers = []
        layers.append(LayerSpec(torch.nn.Linear, self.input_dim, self.hidden_dim))
        for x in range(self.num_layers):
            layers.append(
                LayerSpec(torch.nn.Linear,
                          self.hidden_dim,
                          self.hidden_dim,
                          bias=False))
            layers.append(lambda x: x)
        layers.append(LayerSpec(torch.nn.Linear, self.hidden_dim, self.output_dim))

        super().__init__(layers=layers, loss_fn=torch.nn.CrossEntropyLoss(), **kwargs)


152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
class SimpleOptimizer(torch.optim.Optimizer):
    def __init__(self, params, lr=0.11072018):
        defaults = dict(lr=lr)
        super(SimpleOptimizer, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(SimpleOptimizer, self).__setstate__(state)

    def step(self, closure=None):
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                p.data.add_(-group['lr'], d_p)

        return loss


175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
class HybridStateOptimizer(torch.optim.Optimizer):
    def __init__(self, params, lr=0.11072018):
        defaults = dict(lr=lr)
        super(HybridStateOptimizer, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(HybridStateOptimizer, self).__setstate__(state)

    def step(self, closure=None):
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue

                state = self.state[p]
                if len(state) == 0:
                    state['integer_step'] = 0
aiss's avatar
aiss committed
196
                    state['tensor_step'] = torch.zeros(1, device=p.device)
197
198
199
200
201
202
203
204
205

                d_p = p.grad.data
                p.data.add_(-group['lr'], d_p)
                state['integer_step'] += 1
                state['tensor_step'] += 1

        return loss


Olatunji Ruwase's avatar
Olatunji Ruwase committed
206
class PLD_SimpleModel(SimpleModel):
207
208
    def __init__(self, hidden_dim, empty_grad=False):
        super(PLD_SimpleModel, self).__init__(hidden_dim, empty_grad)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
209
210
211
212
213
214
215
216

    def forward(self, x, y, **kwargs):
        pld = kwargs.get('progressive_layer_drop', False)
        theta = kwargs.get('pld_theta', 1.0)
        hidden_dim = super(PLD_SimpleModel, self).forward(x, y)
        return hidden_dim


aiss's avatar
aiss committed
217
218
219
220
221
222
223
224
225
def random_dataset(total_samples, hidden_dim, device, dtype=torch.half):
    train_data = torch.randn(total_samples, hidden_dim, device=device, dtype=dtype)
    train_label = torch.empty(total_samples,
                              dtype=torch.long,
                              device=device).random_(hidden_dim)
    train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
    return train_dataset


226
def random_dataloader(model, total_samples, hidden_dim, device, dtype=torch.half):
227
    batch_size = model.train_micro_batch_size_per_gpu()
aiss's avatar
aiss committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    train_dataset = random_dataset(total_samples, hidden_dim, device, dtype=dtype)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size)
    return train_loader


def sequence_dataloader(model,
                        total_samples,
                        hidden_dim,
                        device,
                        seq_len: int = 32,
                        dtype=torch.half):
    batch_size = model.train_micro_batch_size_per_gpu()
    train_data = torch.randn(total_samples,
                             seq_len,
                             hidden_dim,
                             device=device,
                             dtype=dtype)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    train_label = torch.empty(total_samples,
                              dtype=torch.long,
                              device=device).random_(hidden_dim)
    train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size)
    return train_loader


def create_config_from_dict(tmpdir, config_dict):
    config_path = os.path.join(tmpdir, 'temp_config.json')
    with open(config_path, 'w') as fd:
        json.dump(config_dict, fd)
    return config_path


260
def create_deepspeed_args():
261
262
263
    parser = argparse.ArgumentParser()
    args = parser.parse_args(args='')
    args.deepspeed = True
264
265
266
267
    if torch.distributed.is_initialized():
        # We assume up to one full node executing unit tests
        assert torch.distributed.get_world_size() <= torch.cuda.device_count()
        args.local_rank = torch.distributed.get_rank()
268
    return args
269
270
271
272
273
274
275


def args_from_dict(tmpdir, config_dict):
    args = create_deepspeed_args()
    config_path = create_config_from_dict(tmpdir, config_dict)
    args.deepspeed_config = config_path
    return args