cpu_adam.h 7.27 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#pragma once

#define NOMINMAX  // Windows idiosyncrasy
                  // https://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c

#include <cuda_fp16.h>
#include <cuda_runtime_api.h>
#include <stdio.h>
#include <cassert>
#include "cuda.h"
#include "custom_cuda_layers.h"
#include "simd.h"

#define STEP(SPAN)                                \
    void Step_##SPAN(float* _params,              \
                     float* grads,                \
                     float* _exp_avg,             \
                     float* _exp_avg_sq,          \
                     size_t _param_size,          \
                     __half* dev_param = nullptr, \
                     bool half_precision = false);

class Adam_Optimizer {
public:
    Adam_Optimizer(float alpha = 1e-3,
                   float betta1 = 0.9,
                   float betta2 = 0.999,
                   float eps = 1e-8,
                   float weight_decay = 0,
                   bool adamw_mode = true)
        : _alpha(alpha),
          _betta1(betta1),
          _betta2(betta2),
          _eps(eps),
          _weight_decay(weight_decay),
          _betta1_t(1.0),
          _betta2_t(1.0),
          _step(0),
          _buf_index(false),
          _adamw_mode(adamw_mode)
    {
        cudaMallocHost((void**)_doubled_buffer, TILE * sizeof(float));
        cudaMallocHost((void**)(_doubled_buffer + 1), TILE * sizeof(float));

        _streams[0] = Context::Instance().GetCurrentStream();
        _streams[1] = Context::Instance().GetNewStream();
    }
    ~Adam_Optimizer()
    {
        cudaFreeHost(_doubled_buffer[0]);
        cudaFreeHost(_doubled_buffer[1]);
    }
#if defined(__AVX512__) or defined(__AVX256__)
    template <int span>
    void Step_AVX(size_t* rounded_size,
                  float* _params,
                  float* grads,
                  float* _exp_avg,
                  float* _exp_avg_sq,
                  size_t param_size,
                  __half* dev_param = nullptr,
                  bool half_precision = false);
#endif
    STEP(1)
    STEP(4)
    STEP(8)
    inline void SynchronizeStreams()
    {
        for (int i = 0; i < 2; i++) cudaStreamSynchronize(_streams[i]);
    }
    inline void IncrementStep(size_t step, float beta1, float beta2)
    {
        if (beta1 != _betta1 || beta2 != _betta2) {
            _step = step;
            _betta1 = beta1;
            _betta2 = beta2;
            _betta1_t = std::pow(_betta1, step);
            _betta2_t = std::pow(_betta2, step);
        } else {
            _step++;
            if (_step != step) {
                _betta1_t = std::pow(_betta1, step);
                _betta2_t = std::pow(_betta2, step);
                _step = step;
            } else {
                _betta1_t *= _betta1;
                _betta2_t *= _betta2;
            }
        }
    }
    inline void update_state(float lr, float epsilon, float weight_decay, bool bias_correction)
    {
        _alpha = lr;
        _eps = epsilon;
        _weight_decay = weight_decay;

        _bias_correction1 = 1.0f;
        _bias_correction2 = 1.0f;
        if (bias_correction == 1) {
            _bias_correction1 = 1 - _betta1_t;
            _bias_correction2 = 1 / sqrt(1 - _betta2_t);
        }
    }

private:
    float _alpha;
    float _betta1;
    float _betta2;
    float _eps;
    float _weight_decay;

    float _betta1_t;
    float _betta2_t;
    size_t _step;

    float _bias_correction1;
    float _bias_correction2;

    float* _doubled_buffer[2];
    bool _buf_index;
    bool _adamw_mode;

    cudaStream_t _streams[2];
};

#if defined(__AVX512__) or defined(__AVX256__)
template <int span>
void Adam_Optimizer::Step_AVX(size_t* rounded_size,
                              float* _params,
                              float* grads,
                              float* _exp_avg,
                              float* _exp_avg_sq,
                              size_t _param_size,
                              __half* dev_params,
                              bool half_precision)
{
    size_t new_rounded_size = 0;

    AVX_Data betta1_4;
    betta1_4.data = SIMD_SET(_betta1);
    AVX_Data betta2_4;
    betta2_4.data = SIMD_SET(_betta2);

    float betta1_minus1 = 1 - _betta1;
    float betta2_minus1 = 1 - _betta2;
    AVX_Data betta1_minus1_4;
    betta1_minus1_4.data = SIMD_SET(betta1_minus1);
    AVX_Data betta2_minus1_4;
    betta2_minus1_4.data = SIMD_SET(betta2_minus1);

    AVX_Data bias2_sqrt;
    bias2_sqrt.data = SIMD_SET(_bias_correction2);

    AVX_Data eps_4;
    eps_4.data = SIMD_SET(_eps);

    float step_size = -1 * _alpha / _bias_correction1;
    AVX_Data step_size_4;
    step_size_4.data = SIMD_SET(step_size);

    float w_decay = -1 * _alpha * _weight_decay;
    AVX_Data weight_decay4;
    if (_weight_decay > 0)
        weight_decay4.data = (_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
    new_rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * span);
    for (size_t t = 0; t < new_rounded_size; t += TILE) {
        size_t copy_size = TILE;
        if ((t + TILE) > new_rounded_size) copy_size = new_rounded_size - t;
        size_t offset = copy_size + t;
        if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
#pragma omp parallel for
        for (size_t i = t; i < offset; i += SIMD_WIDTH * span) {
            AVX_Data grad_4[span];
            simd_load<span>(grad_4, grads + i, half_precision);

            AVX_Data momentum_4[span];
            simd_load<span>(momentum_4, _exp_avg + i, false);

            AVX_Data variance_4[span];
            simd_load<span>(variance_4, _exp_avg_sq + i, false);

            AVX_Data param_4[span];
            simd_load<span>(param_4, _params + i, half_precision);

            if (_weight_decay > 0 && !_adamw_mode) {
                simd_fma<span>(grad_4, param_4, weight_decay4, grad_4);
            }

            simd_mul<span>(momentum_4, momentum_4, betta1_4);
            simd_fma<span>(momentum_4, grad_4, betta1_minus1_4, momentum_4);
            simd_mul<span>(variance_4, variance_4, betta2_4);
            simd_mul<span>(grad_4, grad_4, grad_4);
            simd_fma<span>(variance_4, grad_4, betta2_minus1_4, variance_4);
            simd_sqrt<span>(grad_4, variance_4);
            simd_fma<span>(grad_4, grad_4, bias2_sqrt, eps_4);
            simd_div<span>(grad_4, momentum_4, grad_4);

            if (_weight_decay > 0 && _adamw_mode) {
                simd_fma<span>(param_4, param_4, weight_decay4, param_4);
            }

            simd_fma<span>(param_4, grad_4, step_size_4, param_4);

            simd_store<span>(_params + i, param_4, half_precision);
            if (dev_params) {
                simd_store<span>(_doubled_buffer[_buf_index] + (i - t), param_4, half_precision);
            }
            simd_store<span>(_exp_avg + i, momentum_4, false);
            simd_store<span>(_exp_avg_sq + i, variance_4, false);
        }

        if (dev_params) {
            if (half_precision)
                launch_param_update_half(
                    _doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
            else
                launch_param_update(
                    _doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);

            _buf_index = !_buf_index;
        }
    }
    *rounded_size = new_rounded_size;
}
#endif