"vscode:/vscode.git/clone" did not exist on "a1de6459e618872306aca63bfd585cb58be1c3da"
ds_transformer_cuda.h 5.33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#pragma once

#include <cuda_runtime_api.h>
#include <curand.h>
#include <memory>
#include <vector>
#include "cublas_v2.h"
#include "cuda.h"
#include "dropout.h"
#include "feed_forward.h"
#include "gelu.h"
#include "general_kernels.h"
#include "normalize_layer.h"
#include "softmax.h"
#include "strided_batch_gemm.h"

struct BertGemmAlgos {
    int m_gemm_qkv_algo;
    int m_gemm_inter_algo;
    int m_gemm_output_algo;
    int m_gemm_batch1_algo;
    int m_gemm_batch2_algo;

    BertGemmAlgos()
        : m_gemm_qkv_algo(-1),
          m_gemm_inter_algo(-1),
          m_gemm_output_algo(-1),
          m_gemm_batch1_algo(-1),
          m_gemm_batch2_algo(-1)
    {
    }
};

template <typename T>
class BertTransformerLayer {
public:
    BertTransformerLayer(int layer_id,
                         int batch_size,
                         int hidden_size,
                         int num_heads,
                         int intermediate_size,
                         int seq_length,
                         float attn_dropout_ratio,
                         float hidden_output_dropout_ratio,
                         bool pre_or_postLayerNorm,
                         const std::vector<std::array<int, 3>>& gemm_algos,
                         bool attn_dropout_checkpoint,
                         bool normalize_invertible,
                         bool gelu_checkpoint,
                         bool stochastic_mode);

    virtual ~BertTransformerLayer();

    void Forward(int bsz,
                 const T* input_ptr,
                 const T* input_mask_ptr,
                 const T* attn_qkvw_ptr,
                 const T* attn_qkvb_ptr,
                 const T* attn_ow_ptr,
                 const T* attn_ob_ptr,
                 const T* attn_nw_ptr,
                 const T* attn_nb_ptr,
                 const T* inter_w_ptr,
                 const T* inter_b_ptr,
                 const T* output_w_ptr,
                 const T* output_b_ptr,
                 const T* norm_w_ptr,
                 const T* norm_b_ptr,
                 T* out_ptr,
                 T* inp_norm_ptr,
                 T* q_tf_ptr,
                 T* k_tf_ptr,
                 T* v_tf_ptr,
                 T* softmax_output_ptr,
                 T* ctx_bufB_ptr,
                 T* attn_o_inp_ptr,
                 T* add_res_ptr,
                 T* ff1_inp_ptr,
                 T* gelu_inp_ptr,
                 T* ff2_inp_ptr);

    void Backward(int bsz,
                  const T* grad_output_ptr,
                  const T* input_ptr,
                  const T* output_ptr,
                  const T* inp_norm_ptr,
                  const T* q_tf_ptr,
                  const T* k_tf_ptr,
                  const T* v_tf_ptr,
                  const T* softmax_output_ptr,
                  const T* ctx_bufB_ptr,
                  const T* attn_o_inp_ptr,
                  const T* add_res_ptr,
                  const T* ff1_inp_ptr,
                  const T* gelu_inp_ptr,
                  const T* ff2_inp_ptr,
                  const T* input_mask_ptr,
                  const T* attn_qkvw_ptr,
                  const T* attn_ow_ptr,
                  const T* attn_nw_ptr,
                  const T* attn_nb_ptr,
                  const T* inter_w_ptr,
                  const T* inter_b_ptr,
                  const T* output_w_ptr,
                  const T* norm_w_ptr,
                  const T* norm_b_ptr,

                  T* grad_input_ptr,
                  T* grad_attn_qkvw_ptr,
                  T* grad_attn_qkvb_ptr,
                  T* grad_attn_ow_ptr,
                  T* grad_attn_ob_ptr,
                  T* grad_attn_nw_ptr,
                  T* grad_attn_nb_ptr,
                  T* grad_inter_w_ptr,
                  T* grad_inter_b_ptr,
                  T* grad_output_w_ptr,
                  T* grad_output_b_ptr,
                  T* grad_norm_w_ptr,
                  T* grad_norm_b_ptr);

    void SetIntermediateBuffers(uint8_t* attn_prob_dropout_mask_ptr,
                                uint8_t* attn_output_dropout_mask_ptr,
                                uint8_t* layer_output_dropout_mask_ptr);

    inline int GetBatchSize() const { return _batch_size; }
    inline int GetNumHeads() const { return _heads; }
    inline int GetSeqLength() const { return _seq_length; }
    inline int GetHiddenSize() const { return _hidden_size; }
    void SetTrainingMode(bool training);

private:
    void Initialize();
    size_t getWorkspaceSize(int maxBatchSize) const;

    // Params
    int _layer_id;
    int _batch_size;
    int _hidden_size;
    int _heads;
    int _size_per_head;
    int _intermediate_size;
    int _seq_length;

    bool _pre_or_postLayerNorm;

    cublasHandle_t _cublasHandle;
    cudaStream_t _stream;

    // layers
    FeedForward<T> _qkv_linear;
    FeedForward<T> _attn_out_linear;
    Normalize_Layer<T> _norm_layer2;
    Normalize_Layer<T> _norm_layer3;
    Normalize_Layer<T>* _last_normalize;
    FeedForward<T> _ff1, _ff2;
    Softmax<T> _softmax;
    Gelu<T> _gelu;
    Dropout<T> _attn_prob_dropout;
    Dropout<T> _attn_output_dropout;
    Dropout<T> _layer_output_dropout;
    StridedBatchGemm<T> _attn_scores;
    StridedBatchGemm<T> _attn_context;

    bool _training;

    // Memory saving flags
    bool _attn_dropout_checkpoint;
    bool _normalize_invertible;
    bool _gelu_checkpoint;

    // High Performace flags
    bool _stochastic_mode;
};