test_nccl_perf.py 2.91 KB
Newer Older
Conglong Li's avatar
Conglong Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import time
import torch
import torch.distributed as dist
import numpy as np
import argparse
import deepspeed
import os

from deepspeed.runtime.comm.nccl import NcclBackend
from deepspeed.utils.timer import SynchronizedWallClockTimer
from statistics import mean

timers = SynchronizedWallClockTimer()

parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', type=int, default=-1)
args = parser.parse_args()

deepspeed.init_distributed(dist_backend='nccl')
args.local_rank = int(os.environ['LOCAL_RANK'])

torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)

size = dist.get_world_size()
rank = dist.get_rank()

backend = NcclBackend()
local_rank = args.local_rank

# Setting tensor_size (BERT-Large)
tensor_size = 300 * 2**20
server_size = int(tensor_size / size)
if tensor_size % (8 * size) != 0:
    right_tensor_size = tensor_size + (8 * size - (tensor_size % (8 * size)))
else:
    right_tensor_size = tensor_size
right_server_size = right_tensor_size // size

# Adding bias to the initialization of the gradient we are communicating
# In order to get rid of the case where some elements in the gradient are too small
a = (torch.rand(tensor_size, device=device) - 0.5) + 0.01 * rank

worker_error = torch.zeros(right_tensor_size, device=device)
server_error = torch.zeros(right_server_size, device=device)

warmup = 10
iters = 10

# Warmup
for i in range(warmup):
    backend.compressed_allreduce(a, worker_error, server_error, local_rank)

time_list = []

a_sign = a.sign().add_(1).bool().float().add_(-0.5).mul_(2.0)
scale = a.norm() / np.sqrt(a.numel())
a_compressed = scale * a_sign

print("Shape of the compressed buffer:", a_compressed.shape) if rank == 0 else None

for i in range(iters):
    timers('compressed_allreduce').start()
    backend.compressed_allreduce(a, worker_error, server_error, local_rank)
    #torch.distributed.all_reduce(a_compressed)
    timers('compressed_allreduce').stop()
    time_list.append(timers('compressed_allreduce').elapsed())

#timer_names = ['compressed_allreduce']
#timers.log(names=timer_names, normalizer=1, memory_breakdown=None)

places = 2
convert = 1e3
float_size = 4

if rank == 0:
    for i in range(iters):
        lat = time_list[i]
        print("latency = ", lat * convert)

minlat = round(min(time_list) * convert)
maxlat = round(max(time_list) * convert)
meanlat = round(mean(time_list) * convert, places)
print("min, max, and mean = {} ms, {} ms, {} ms".format(minlat,
                                                        maxlat,
                                                        meanlat)) if rank == 0 else None
#print("tensor shape", a.shape)
duration = meanlat / 1e3
tput = ((tensor_size * 4) / duration)
print("algo throughput: %f Bytes/s, %f GB/s" % (tput, tput / 1e9)) if rank == 0 else None
size = tensor_size * 4
n = dist.get_world_size()
busbw = (size / duration) * (2 * (n - 1) / n)
print("busbw: %f GB/s" % (busbw / 1e9)) if rank == 0 else None