"vscode:/vscode.git/clone" did not exist on "f498fa1070baf207a5cdfcd9ed76bb91f515d5f4"
test_data_efficiency.py 8.25 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
'''Copyright The Microsoft DeepSpeed Team'''

import torch
import os
import deepspeed
from deepspeed.accelerator import get_accelerator
from unit.common import DistributedTest
from unit.simple_model import Curriculum_SimpleModel, SimpleModel, random_dataloader, random_dataset


class MPU():
    def __init__(self, tp_world_size):
        self.rank = deepspeed.comm.get_rank()
        self.world_size = deepspeed.comm.get_world_size()
        self.tp_world_size = tp_world_size

        for i in range(0, self.world_size, tp_world_size):
            ranks = range(i, i + tp_world_size)
            group = deepspeed.comm.new_group(ranks)
            if self.rank in ranks:
                self.tp_group = group

        for i in range(0, tp_world_size):
            ranks = range(i, self.world_size, tp_world_size)
            group = deepspeed.comm.new_group(ranks)
            if self.rank in ranks:
                self.dp_group = group

    def get_model_parallel_rank(self):
        return self.rank % self.tp_world_size

    def get_model_parallel_world_size(self):
        return self.tp_world_size

    def get_data_parallel_rank(self):
        return self.rank // self.tp_world_size

    def get_data_parallel_world_size(self):
        return self.world_size // self.tp_world_size

    def get_data_parallel_group(self):
        return self.dp_group

    def get_model_parallel_group(self):
        return self.tp_group


class TestDataEfficiency(DistributedTest):
    world_size = 2

    def test_curriculum_learning(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015,
                    "weight_decay": 0.01
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": True,
                "loss_scale": 0,
                "initial_scale_power": 16
            },
            "data_efficiency": {
                "enabled": True,
                "seed": 1234,
                "data_sampling": {
                    "enabled": True,
                    "num_workers": 0,
                    "curriculum_learning": {
                        "enabled": True,
                        "data_cluster_path": "/tmp",
                        "curriculum_metrics": {
                            "dummy_metric": {
                                "index_to_sample_path": "dummy",
                                "index_to_metric_path": "dummy",
                                "difficulty_type": "value",
                                "clustering_type": "single_cluster",
                                "min_difficulty": 2,
                                "max_difficulty": 10,
                                "schedule_type": "fixed_root",
                                "schedule_config": {
                                    "total_curriculum_step": 8,
                                    "difficulty_step": 2,
                                    "root_degree": 1
                                }
                            }
                        }
                    }
                }
            }
        }

        def data_post_process(data, data_sampler_state_dict):
            assert 'dummy_metric' in data_sampler_state_dict['current_difficulties']
            return data

        hidden_dim = 10
        model = SimpleModel(hidden_dim)
        dataset = random_dataset(20, hidden_dim, torch.device('cpu'), dtype=torch.half)
        model, _, data_loader, _ = deepspeed.initialize(config=config_dict,
                                              model=model,
                                              training_data=dataset,
                                              model_parameters=model.parameters(),
                                              mpu=MPU(1))
        if model.mpu.get_data_parallel_rank() == 0 and not os.path.exists('/tmp'):
            os.makedirs('/tmp')
        model.set_data_post_process_func(data_post_process)
        for n, batch in enumerate(data_loader):
            x = batch[0].to(get_accelerator().current_device_name())
            y = batch[1].to(get_accelerator().current_device_name())
            loss = model(x, y)
            model.backward(loss)
            model.step()
            if n >= 10:
                break


class TestLegacyCurriculumScheduler(DistributedTest):
    world_size = 2

    def test_fixed_discrete(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015,
                    "weight_decay": 0.01
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": True,
                "loss_scale": 0,
                "initial_scale_power": 16
            },
            "curriculum_learning": {
                "enabled": True,
                "curriculum_type": "seqlen",
                "min_difficulty": 1,
                "max_difficulty": 5,
                "schedule_type": "fixed_discrete",
                "schedule_config": {
                    "difficulty": [1,
                                   2,
                                   3,
                                   4,
                                   5],
                    "max_step": [2,
                                 4,
                                 6,
                                 8]
                }
            }
        }
        hidden_dim = 10
        ground_truths = {1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 3, 7: 4, 8: 4}

        model = Curriculum_SimpleModel(hidden_dim)
        model, _, _, _ = deepspeed.initialize(config=config_dict,
                                              model=model,
                                              model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=20,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss, seqlen = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
            true_seqlen = 5
            if n + 1 in ground_truths:
                true_seqlen = ground_truths[n + 1]
            assert seqlen == true_seqlen, f"Incorrect curriculum schedule"

    def test_fixed_linear(self):
        config_dict = {
            "train_batch_size": 2,
            "steps_per_print": 1,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.00015,
                    "weight_decay": 0.01
                }
            },
            "gradient_clipping": 1.0,
            "fp16": {
                "enabled": True,
                "loss_scale": 0,
                "initial_scale_power": 16
            },
            "curriculum_learning": {
                "enabled": True,
                "curriculum_type": "seqlen",
                "min_difficulty": 2,
                "max_difficulty": 10,
                "schedule_type": "fixed_linear",
                "schedule_config": {
                    "total_curriculum_step": 8,
                    "difficulty_step": 2
                }
            }
        }
        hidden_dim = 10
        ground_truths = {1: 2, 2: 4, 3: 4, 4: 6, 5: 6, 6: 8, 7: 8, 8: 10, 9: 10, 10: 10}

        model = Curriculum_SimpleModel(hidden_dim)
        model, _, _, _ = deepspeed.initialize(config=config_dict,
                                              model=model,
                                              model_parameters=model.parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=20,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss, seqlen = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
            if n + 1 in ground_truths:
                true_seqlen = ground_truths[n + 1]
                assert seqlen == true_seqlen, f"Incorrect curriculum schedule"