test_quantize.py 5.77 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Copyright 2022 The Microsoft DeepSpeed Team
"""

import pytest
import torch
from deepspeed.ops import op_builder
from deepspeed.accelerator import get_accelerator

inference_module = None


def run_quantize_ds(activations, num_groups, q_bits, is_symmetric_quant):
    global inference_module
    if inference_module is None:
        inference_module = op_builder.QuantizerBuilder().load()

    return inference_module.quantize(
        activations,
        num_groups,
        q_bits,
        inference_module.Symmetric
        if is_symmetric_quant else inference_module.Asymmetric)


def get_q_props(q_bits):
    q_range = 2**q_bits
    q_min = -(2**(q_bits - 1))
    q_max = (2**(q_bits - 1) - 1)

    q_min = torch.IntTensor([q_min]).to(device=get_accelerator().device_name())
    q_max = torch.IntTensor([q_max]).to(device=get_accelerator().device_name())
    return q_range, q_max, q_min


def get_scale_zero_point(q_bits,
                         is_symmetric_quant,
                         max,
                         min,
                         absmax,
                         scales=None,
                         zero_points=None):

    q_range, q_max, q_min = get_q_props(q_bits)

    if is_symmetric_quant:
        scale = torch.empty_like(absmax)
        for i, x in enumerate(absmax):
            scale[i] = torch.ones_like(x) if x == 0 else q_range / (2 * x)
        zero_point = torch.zeros(scale.shape,
                                 dtype=torch.float32,
                                 device=get_accelerator().device_name())
    else:
        scale = torch.empty_like(max)
        for i, x in enumerate(max):
            scale[i] = torch.ones_like(x) if max[i] == min[i] else q_range / (max[i] -
                                                                              min[i])
        zero_point = q_min - (min * scale)

    return scale, zero_point


def int4x2to2xint4(int4X2tensor):
    high = int4X2tensor >> 4
    low = (int4X2tensor << 4) >> 4
    return torch.stack((high, low), dim=-1).flatten()


def run_float_quantize(q_bits, is_symmetric_quant, activations_ref, num_groups):

    # Reference implementation
    # https://pytorch.org/docs/stable/quantization-support.html

    activations_ref = activations_ref.reshape(num_groups, -1).to(dtype=torch.float32)

    max_abs_activations_ref = torch.amax(torch.abs(activations_ref),
                                         dim=-1).view(num_groups,
                                                      -1)
    max_activations_ref = torch.amax(activations_ref, dim=-1).view(num_groups, -1)
    min_activations_ref = torch.amin(activations_ref, dim=-1).view(num_groups, -1)

    _, q_max, q_min = get_q_props(q_bits)

    scale, zero_point = get_scale_zero_point(q_bits, is_symmetric_quant, max_activations_ref, min_activations_ref, max_abs_activations_ref)

    data_f = activations_ref * scale

    if not is_symmetric_quant:
        data_f = data_f + zero_point

    data_i32 = torch.round(data_f).to(dtype=torch.int32)

    data_i32 = torch.minimum(torch.maximum(data_i32,
                                           q_min.expand_as(data_i32)),
                             q_max.expand_as(data_i32))
    data_i8 = data_i32.to(dtype=torch.int8)

    scales = (1.0 / scale).reshape(-1, 1)
    offsets = zero_point.reshape(-1, 1)
    params = torch.cat((scales, offsets), dim=-1)

    return data_i8, params


@pytest.mark.inference_ops
@pytest.mark.parametrize("num_groups", [1, 13, 512])
@pytest.mark.parametrize("num_elems",
                         [8,
                          16,
                          32,
                          64,
                          128,
                          256,
                          4096,
                          8192,
                          12288,
                          16384])
@pytest.mark.parametrize("is_symmetric_quant", [True, False])
@pytest.mark.parametrize("q_bits", [4, 8])
@pytest.mark.parametrize("directed_case", ["all_zeros", None])
def test_float_quantize(num_elems,
                        num_groups,
                        is_symmetric_quant,
                        q_bits,
                        directed_case):

    if directed_case == "all_zeros":
        activations_ds = torch.zeros((num_groups,
                                      num_elems),
                                     dtype=torch.float16,
                                     device=get_accelerator().device_name())
    else:
        activations_ds = torch.randn((num_groups,
                                      num_elems),
                                     dtype=torch.float16,
                                     device=get_accelerator().device_name())
    activations_ref = activations_ds.clone().detach()

    ref_out_tensor, ref_params = run_float_quantize(q_bits, is_symmetric_quant, activations_ref, num_groups)

    ds_out_tensor, ds_out_params = run_quantize_ds(activations_ds, num_groups, q_bits, is_symmetric_quant)

    if (q_bits == 4):
        ds_out_tensor = int4x2to2xint4(ds_out_tensor)

    # Allow a max difference of 1 to account for differences in rounding in pytorch implementation
    assert (torch.all(
        torch.lt(torch.abs(ds_out_tensor.flatten() - ref_out_tensor.flatten()),
                 2)))
    if is_symmetric_quant:
        assert (torch.allclose(ds_out_params.flatten(), ref_params[:, 0].flatten()))
    else:
        assert (torch.allclose(ds_out_params[:,
                                             0].flatten(),
                               ref_params[:,
                                          0].flatten()))
        assert (torch.allclose(ds_out_params[:,
                                             1].flatten(),
                               ref_params[:,
                                          1].flatten(),
                               atol=5e-5,
                               rtol=5e-5))