automatic-tensor-parallelism.md 5.8 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
title: "Automatic Tensor Parallelism for HuggingFace Models"
tags: inference
---

# Contents
   * [Introduction](#introduction)
   * [Example Script](#example-script)
        * [Launching](#launching)
        * [OPT 13B Inference Performance Comparison](#opt-13b-inference-performance-comparison)
   * [Supported Models](#supported-models)
   * [Unsupported Models](#unsupported-models)

# Introduction
This tutorial demonstrates the new automatic tensor parallelism feature for inference. Previously, the user needed to provide an injection policy to DeepSpeed to enable tensor parallelism. DeepSpeed now supports automatic tensor parallelism for HuggingFace models by default as long as kernel injection is not enabled and an injection policy is not provided. This allows our users to improve performance of models that are not currently supported via kernel injection, without providing the injection policy. Below is an example of the new method:

```python
# ---------------------------------------
# New automatic tensor parallelism method
# ---------------------------------------
import os
import torch
import transformers
import deepspeed
local_rank = int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
# create the model pipeline
pipe = transformers.pipeline(task="text2text-generation", model="google/t5-v1_1-small", device=local_rank)
# Initialize the DeepSpeed-Inference engine
pipe.model = deepspeed.init_inference(
    pipe.model,
    mp_size=world_size,
    dtype=torch.float
)
output = pipe('Input String')
```

Previously, to run inference with only tensor parallelism for the models that don't have kernel injection support, you could pass an injection policy that showed the two specific linear layers on a Transformer Encoder/Decoder layer: 1) the attention output GeMM and 2) layer output GeMM. We needed these parts of the layer to add the required all-reduce communication between GPUs to merge the partial results across model-parallel ranks. Below, we show an example of this previous method:

```python
# ----------------------------------
# Previous tensor parallelism method
# ----------------------------------
import os
import torch
import transformers
import deepspeed
from transformers.models.t5.modeling_t5 import T5Block
local_rank = int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
# create the model pipeline
pipe = transformers.pipeline(task="text2text-generation", model="google/t5-v1_1-small", device=local_rank)
# Initialize the DeepSpeed-Inference engine
pipe.model = deepspeed.init_inference(
    pipe.model,
    mp_size=world_size,
    dtype=torch.float,
    injection_policy={T5Block: ('SelfAttention.o', 'EncDecAttention.o', 'DenseReluDense.wo')}
)
output = pipe('Input String')
```

With automatic tensor parallelism, we do not need to provide the injection policy for supported models. The injection policy will be determined at runtime and applied automatically.


# Example Script

We can observe performance improvement with automatic tensor parallelism using the [inference test suite](https://github.com/microsoft/DeepSpeedExamples/blob/master/inference/huggingface/text-generation/inference-test.py). The script includes per token latency, bandwidth, throughput and memory checks for comparison. See the [README](https://github.com/microsoft/DeepSpeedExamples/tree/master/inference/huggingface/text-generation#deepspeed-huggingface-text-generation-examples) for more information.


## Launching

Use the following command to run without DeepSpeed and without tensor parallelism. Set the `test_performance` flag to collect performance data:

```bash
deepspeed --num_gpus <num_gpus> DeepSpeedExamples/inference/huggingface/text-generation/inference-test.py --name <model> --batch_size <batch_size> --test_performance
```


To enable tensor parallelism, you need to use the flag `ds_inference` for the compatible models:

```bash
deepspeed --num_gpus <num_gpus> DeepSpeedExamples/inference/huggingface/text-generation/inference-test.py --name <model> --batch_size <batch_size> --test_performance --ds_inference
```

## OPT 13B Inference Performance Comparison

The following results were collected using V100 SXM2 32GB GPUs.

### Max New Tokens = 50

| Test       | Memory Allocated per GPU   | Max Batch Size   | Max Throughput per GPU   |
| ---------- | -------------------------- | ---------------- | ------------------------ |
| No TP      | 23.94 GB                   | 64               | 18.84 TFlops             |
| 2 GPU TP   | 12.23 GB                   | 320              | 27.17 TFlops             |
| 4 GPU TP   | 6.36 GB                    | 664              | 27.63 TFlops             |

### Max New Tokens = 1024

| Test       | Memory Allocated per GPU   | Max Batch Size   | Max Throughput per GPU   |
| ---------- | -------------------------- | ---------------- | ------------------------ |
| No TP      | 23.94 GB                   | 2                | 1.65 TFlops              |
| 2 GPU TP   | 12.23 GB                   | 20               | 4.61 TFlops              |
| 4 GPU TP   | 6.36 GB                    | 56               | 4.90 TFlops              |

# Supported Models

The following model families have been successfully tested with automatic tensor parallelism. Other models may work but have not been tested yet.

- albert
- bert
- bigbird_pegasus
- camembert
- deberta_v2
- electra
- ernie
- esm
- gpt-j
- gpt-neo
- gpt-neox
- longt5
- luke
- m2m_100
- marian
- mvp
- nezha
- openai
- opt
- pegasus
- perceiver
- plbart
- reformer
- roberta
- roformer
- splinter
- t5
- xglm
- xlm_roberta
- yoso

# Unsupported Models

The following models are not currently supported with automatic tensor parallelism. They may still be compatible with other DeepSpeed features (e.g., kernel injection for Bloom):

- bloom
- codegen
- deberta
- flaubert
- fsmt
- gpt2
- led
- longformer
- xlm
- xlnet