softmax.hip 22 KB
Newer Older
aiss's avatar
aiss committed
1
2
// !!! This is a file automatically generated by hipify!!!
#include "hip/hip_runtime.h"
aiss's avatar
aiss committed
3
4
5
6
/*
Copyright 2022 The Microsoft DeepSpeed Team
*/

aiss's avatar
aiss committed
7
#include <limits>
aiss's avatar
aiss committed
8
#include "inference_cuda_layers.h"
aiss's avatar
aiss committed
9
10
11
12
13
14
15
16

#ifndef __HIP_PLATFORM_HCC__
#include <cuda_profiler_api.h>
#endif
#include <cstdio>
#include <cstdlib>
#include <ctime>

aiss's avatar
aiss committed
17
#define ATTN_THREADS 256
aiss's avatar
aiss committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#define MAX_REG_SIZE 8

#define minus_infinity -10000.0

void CheckCudaErrorAux(const char* file, unsigned line)
{
    hipError_t err = hipGetLastError();
    if (err == hipSuccess) return;
    std::cerr << hipGetErrorString(err) << "(" << err << ") at " << file << ":" << line
              << std::endl;
    throw std::runtime_error("CUDA ERROR!!!\n");
}

#define CUDA_CHECK_ERROR() CheckCudaErrorAux(__FILE__, __LINE__)

namespace cg = cooperative_groups;

__global__ void attn_softmax_v2(__half* vals,
                                __half* mask,
aiss's avatar
aiss committed
37
38
                                __half* alibi,
                                float layer_scale,
aiss's avatar
aiss committed
39
40
41
42
43
44
45
46
                                bool triangular,
                                bool recompute,
                                bool local_attention,
                                int window_size,
                                int total_count,
                                int heads,
                                int sequence_length,
                                int num_seq,
aiss's avatar
aiss committed
47
48
49
                                int head_offset,
                                int mask_stride,
                                int mp_size,
aiss's avatar
aiss committed
50
51
52
53
54
55
56
57
                                int iterations,
                                int reduceWidth)
{
    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<WARP_SIZE> g = cg::tiled_partition<WARP_SIZE>(b);

    float2 low_data[MAX_REG_SIZE];
    float2 high_data[MAX_REG_SIZE];
aiss's avatar
aiss committed
58
    const __half zero_h = __float2half(0.f);
aiss's avatar
aiss committed
59
60
61
62
63
64
65
66
67
68
69

    int wid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;

    int reduce_blocks = reduceWidth >> 5;
    int seq_lane = threadIdx.x % reduceWidth;

    __shared__ float partialSum[MAX_WARP_NUM];

    int iter_offset = blockIdx.x * (warp_num / reduce_blocks) + (wid / reduce_blocks);
aiss's avatar
aiss committed
70
71
72
    int batch_idx = iter_offset / (num_seq * heads);
    int alibi_offset = batch_idx * heads * mp_size + head_offset;
    int mask_offset = batch_idx * mask_stride + (iter_offset % mask_stride);
aiss's avatar
aiss committed
73
74
75
76

    if (iter_offset < total_count) {
        vals += (iter_offset * sequence_length);

aiss's avatar
aiss committed
77
78
        alibi_offset = (alibi_offset + ((iter_offset / num_seq) % heads)) * sequence_length;
        mask_offset = mask_offset * sequence_length;
aiss's avatar
aiss committed
79
80
81
82
83
84
85
86
87
88
89
        int seq_id = iter_offset % num_seq;
        int seq_id4 = seq_id >> 2;

        int real_seq_id = seq_id + (num_seq == sequence_length ? 0 : sequence_length);
        int window_stride4 = (local_attention && (real_seq_id >> 2) > (window_size >> 2))
                                 ? (real_seq_id >> 2) - (window_size >> 2)
                                 : 0;
        int window_stride =
            (local_attention && real_seq_id >= window_size) ? real_seq_id - window_size : -1;

        float max_val = minus_infinity;
aiss's avatar
aiss committed
90
        // if (lane == 0) printf("%d, %d: %d \n", wid, blockIdx.x, mask_offset);
aiss's avatar
aiss committed
91
92
93
94
95
        for (int i = 0; i < iterations; i++) {
            int data_id = i * (reduceWidth << 2) + (seq_lane << 2);
            if ((!triangular || ((data_id >> 2) <= seq_id4)) && (data_id >> 2) >= window_stride4 &&
                data_id < sequence_length) {
                if ((sequence_length - data_id) >= 4) {
aiss's avatar
aiss committed
96
97
98
                    low_data[i].x = data_id > window_stride
                                        ? __half2float(vals[data_id]) * layer_scale
                                        : minus_infinity;
aiss's avatar
aiss committed
99
100
                    low_data[i].y = ((!triangular || ((data_id + 1) <= seq_id)) &&
                                     (data_id + 1) > window_stride)
aiss's avatar
aiss committed
101
                                        ? __half2float(vals[data_id + 1]) * layer_scale
aiss's avatar
aiss committed
102
103
104
                                        : minus_infinity;
                    high_data[i].x = ((!triangular || ((data_id + 2) <= seq_id)) &&
                                      (data_id + 2) > window_stride)
aiss's avatar
aiss committed
105
                                         ? __half2float(vals[data_id + 2]) * layer_scale
aiss's avatar
aiss committed
106
107
108
                                         : minus_infinity;
                    high_data[i].y = ((!triangular || ((data_id + 3) <= seq_id)) &&
                                      (data_id + 3) > window_stride)
aiss's avatar
aiss committed
109
                                         ? __half2float(vals[data_id + 3]) * layer_scale
aiss's avatar
aiss committed
110
                                         : minus_infinity;
aiss's avatar
aiss committed
111
112
113
114
115
116
117
118
119
120
                    if (alibi) {
                        low_data[i].x = low_data[i].x + __half2float(alibi[data_id + alibi_offset]);
                        low_data[i].y =
                            low_data[i].y + __half2float(alibi[data_id + alibi_offset + 1]);
                        high_data[i].x =
                            high_data[i].x + __half2float(alibi[data_id + alibi_offset + 2]);
                        high_data[i].y =
                            high_data[i].y + __half2float(alibi[data_id + alibi_offset + 3]);
                    }
                    if (mask) {
aiss's avatar
aiss committed
121
122
123
124
125
126
                        low_data[i].x += __half2float(mask[data_id + mask_offset]);
                        low_data[i].y += __half2float(mask[data_id + mask_offset + 1]);
                        high_data[i].x += __half2float(mask[data_id + mask_offset + 2]);
                        high_data[i].y += __half2float(mask[data_id + mask_offset + 3]);
                    }
                } else {
aiss's avatar
aiss committed
127
128
129
                    low_data[i].x = data_id > window_stride
                                        ? __half2float(vals[data_id]) * layer_scale
                                        : minus_infinity;
aiss's avatar
aiss committed
130
131
132
                    low_data[i].y = (((!triangular || (data_id + 1) <= seq_id) &&
                                      (data_id + 1) > window_stride) &&
                                     (data_id + 1) < sequence_length)
aiss's avatar
aiss committed
133
                                        ? __half2float(vals[data_id + 1]) * layer_scale
aiss's avatar
aiss committed
134
135
136
137
                                        : minus_infinity;
                    high_data[i].x = (((!triangular || (data_id + 2) <= seq_id) &&
                                       (data_id + 2) > window_stride) &&
                                      (data_id + 2) < sequence_length)
aiss's avatar
aiss committed
138
                                         ? __half2float(vals[data_id + 2]) * layer_scale
aiss's avatar
aiss committed
139
                                         : minus_infinity;
aiss's avatar
aiss committed
140
141
142
143
144
145
146
147
148
                    if (alibi) {
                        low_data[i].x = low_data[i].x + __half2float(alibi[data_id + alibi_offset]);
                        if ((data_id + 1) < sequence_length)
                            low_data[i].y =
                                low_data[i].y + __half2float(alibi[data_id + alibi_offset + 1]);
                        if ((data_id + 2) < sequence_length)
                            high_data[i].x =
                                high_data[i].x + __half2float(alibi[data_id + alibi_offset + 2]);
                    }
aiss's avatar
aiss committed
149
                    high_data[i].y = minus_infinity;
aiss's avatar
aiss committed
150
                    if (mask) {
aiss's avatar
aiss committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                        low_data[i].x += __half2float(mask[data_id + mask_offset]);
                        if ((data_id + 1) < sequence_length)
                            low_data[i].y += __half2float(mask[data_id + mask_offset + 1]);
                        if ((data_id + 2) < sequence_length)
                            high_data[i].x += __half2float(mask[data_id + mask_offset + 2]);
                    }
                }
                // if(lane == 0) printf("%f , %d, %d \n", low_data[i].x, data_id, seq_id);
                max_val = (low_data[i].x > max_val ? low_data[i].x : max_val);
                max_val = (low_data[i].y > max_val ? low_data[i].y : max_val);
                max_val = (high_data[i].x > max_val ? high_data[i].x : max_val);
                max_val = (high_data[i].y > max_val ? high_data[i].y : max_val);
            } else {
                low_data[i].x = minus_infinity;
                low_data[i].y = minus_infinity;
                high_data[i].x = minus_infinity;
                high_data[i].y = minus_infinity;
            }
        }

        for (int i = 1; i < WARP_SIZE; i *= 2) {
            auto temp = g.shfl_xor(max_val, i);
            max_val = (temp > max_val ? temp : max_val);
        }

        if (reduceWidth > WARP_SIZE) {
            if (lane == 0) partialSum[wid] = max_val;
            b.sync();

            if (lane < warp_num) max_val = partialSum[lane];

            b.sync();

            for (int i = 1; i < reduce_blocks; i *= 2) {
                auto temp = g.shfl_xor(max_val, i);
                max_val = (temp > max_val ? temp : max_val);
            }

            max_val = g.shfl(max_val, threadIdx.x / WARP_SIZE);
        }
        float sum = 0;
        for (int i = 0; i < iterations; i++) {
            low_data[i].x = __expf(low_data[i].x - max_val);
            low_data[i].y = __expf(low_data[i].y - max_val);
            high_data[i].x = __expf(high_data[i].x - max_val);
            high_data[i].y = __expf(high_data[i].y - max_val);

            sum += (low_data[i].x + low_data[i].y + high_data[i].x + high_data[i].y);
        }

        for (int i = 1; i < WARP_SIZE; i *= 2) sum += g.shfl_xor(sum, i);

        if (reduceWidth > WARP_SIZE) {
            if (lane == 0) partialSum[wid] = sum;
            b.sync();

            if (lane < warp_num) sum = partialSum[lane];

            b.sync();

            for (int i = 1; i < reduce_blocks; i *= 2) { sum += g.shfl_xor(sum, i); }

            sum = g.shfl(sum, threadIdx.x / WARP_SIZE);
        }
        sum += 1e-6;
        for (int i = 0; i < iterations; i++) {
            int data_id = i * (reduceWidth << 2) + (seq_lane << 2);

            if (data_id < sequence_length) {
                if ((sequence_length - data_id) >= 4) {
aiss's avatar
aiss committed
221
222
223
224
                    vals[data_id] = __float2half(low_data[i].x / sum);
                    vals[data_id + 1] = __float2half(low_data[i].y / sum);
                    vals[data_id + 2] = __float2half(high_data[i].x / sum);
                    vals[data_id + 3] = __float2half(high_data[i].y / sum);
aiss's avatar
aiss committed
225
                } else {
aiss's avatar
aiss committed
226
227
228
229
230
                    vals[data_id] = __float2half(low_data[i].x / sum);
                    if ((data_id + 1) < sequence_length)
                        vals[data_id + 1] = __float2half(low_data[i].y / sum);
                    if ((data_id + 2) < sequence_length)
                        vals[data_id + 2] = __float2half(high_data[i].x / sum);
aiss's avatar
aiss committed
231
232
233
234
235
236
237
238
                }
            }
        }
    }
}

__global__ void attn_softmax_v2(float* vals,
                                float* attn_mask,
aiss's avatar
aiss committed
239
240
                                float* alibi,
                                float layer_scale,
aiss's avatar
aiss committed
241
242
243
244
245
246
247
248
                                bool triangular,
                                bool recompute,
                                bool local_attention,
                                int window_size,
                                int total_count,
                                int heads,
                                int sequence_length,
                                int num_seq,
aiss's avatar
aiss committed
249
250
251
                                int head_offset,
                                int mask_stride,
                                int mp_size,
aiss's avatar
aiss committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                                int iterations,
                                int reduceWidth)
{
    cg::thread_block b = cg::this_thread_block();
    cg::thread_block_tile<WARP_SIZE> g = cg::tiled_partition<WARP_SIZE>(b);

    float4 data[MAX_REG_SIZE];

    int wid = threadIdx.x >> 5;
    int lane = threadIdx.x & 0x1f;
    int warp_num = blockDim.x >> 5;

    int reduce_blocks = reduceWidth >> 5;
    int seq_lane = threadIdx.x % reduceWidth;

    __shared__ float partialSum[MAX_WARP_NUM];

    int iter_offset = blockIdx.x * (warp_num / reduce_blocks) + (wid / reduce_blocks);
    if (iter_offset < total_count) {
        vals += (iter_offset * sequence_length);

aiss's avatar
aiss committed
273
274
275
276
        int batch_idx = iter_offset / (num_seq * heads);
        int alibi_offset = batch_idx * heads * mp_size + head_offset;
        int mask_offset = batch_idx * mask_stride + (iter_offset % mask_stride);
        mask_offset = mask_offset * sequence_length;
aiss's avatar
aiss committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        int seq_id = iter_offset % num_seq;
        int seq_id4 = seq_id >> 2;

        int real_seq_id = seq_id + (num_seq == sequence_length ? 0 : sequence_length);
        int window_stride4 = (local_attention && (real_seq_id >> 2) > (window_size >> 2))
                                 ? (real_seq_id >> 2) - (window_size >> 2)
                                 : 0;
        int window_stride =
            (local_attention && real_seq_id >= window_size) ? real_seq_id - window_size : -1;

        float max_val = minus_infinity;

        for (int i = 0; i < iterations; i++) {
            int data_id = i * (reduceWidth << 2) + (seq_lane << 2);
            if ((!triangular || ((data_id >> 2) <= seq_id4)) && (data_id >> 2) >= window_stride4 &&
                data_id < sequence_length) {
                if ((sequence_length - data_id) >= 4) {
                    data[i].x = (data_id > window_stride ? vals[data_id] : minus_infinity);
                    data[i].y = ((!triangular || ((data_id + 1) <= seq_id)) &&
                                 (data_id + 1) > window_stride)
                                    ? vals[data_id + 1]
                                    : minus_infinity;
                    data[i].z = ((!triangular || ((data_id + 2) <= seq_id)) &&
                                 (data_id + 2) > window_stride)
                                    ? vals[data_id + 2]
                                    : minus_infinity;
                    data[i].w = ((!triangular || ((data_id + 3) <= seq_id)) &&
                                 (data_id + 3) > window_stride)
                                    ? vals[data_id + 3]
                                    : minus_infinity;
aiss's avatar
aiss committed
307
                    if (attn_mask) {
aiss's avatar
aiss committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
                        data[i].x += attn_mask[data_id + mask_offset];
                        data[i].y += attn_mask[data_id + mask_offset + 1];
                        data[i].z += attn_mask[data_id + mask_offset + 2];
                        data[i].w += attn_mask[data_id + mask_offset + 3];
                    }
                } else {
                    data[i].x = data_id > window_stride ? vals[data_id] : minus_infinity;
                    data[i].y = (((!triangular || (data_id + 1) <= seq_id)) &&
                                 (data_id + 1) > window_stride && (data_id + 1) < sequence_length)
                                    ? (vals[data_id + 1])
                                    : minus_infinity;
                    data[i].z = (((!triangular || (data_id + 2) <= seq_id)) &&
                                 (data_id + 2) > window_stride && (data_id + 2) < sequence_length)
                                    ? (vals[data_id + 2])
                                    : minus_infinity;
                    data[i].w = minus_infinity;
aiss's avatar
aiss committed
324
                    if (attn_mask) {
aiss's avatar
aiss committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
                        data[i].x += attn_mask[data_id + mask_offset];
                        if ((data_id + 1) < sequence_length)
                            data[i].y += attn_mask[data_id + mask_offset + 1];
                        if ((data_id + 2) < sequence_length)
                            data[i].z += attn_mask[data_id + mask_offset + 2];
                    }
                }
                max_val = (data[i].x > max_val ? data[i].x : max_val);
                max_val = (data[i].y > max_val ? data[i].y : max_val);
                max_val = (data[i].z > max_val ? data[i].z : max_val);
                max_val = (data[i].w > max_val ? data[i].w : max_val);
            } else {
                data[i].x = minus_infinity;
                data[i].y = minus_infinity;
                data[i].z = minus_infinity;
                data[i].w = minus_infinity;
            }
        }

        for (int i = 1; i < WARP_SIZE; i *= 2) {
            auto temp = g.shfl_xor(max_val, i);
            max_val = (temp > max_val ? temp : max_val);
        }

        if (reduceWidth > WARP_SIZE) {
            if (lane == 0) partialSum[wid] = max_val;
            b.sync();

            if (lane < warp_num) max_val = partialSum[lane];

            b.sync();

            for (int i = 1; i < reduce_blocks; i *= 2) {
                auto temp = g.shfl_xor(max_val, i);
                max_val = (temp > max_val ? temp : max_val);
            }

            max_val = g.shfl(max_val, threadIdx.x / WARP_SIZE);
        }

        float sum = 0;
        for (int i = 0; i < iterations; i++) {
            data[i].x = __expf(data[i].x - max_val);
            data[i].y = __expf(data[i].y - max_val);
            data[i].z = __expf(data[i].z - max_val);
            data[i].w = __expf(data[i].w - max_val);

            sum += (data[i].x + data[i].y + data[i].z + data[i].w);
        }

        for (int i = 1; i < WARP_SIZE; i *= 2) sum += g.shfl_xor(sum, i);

        if (reduceWidth > WARP_SIZE) {
            if (lane == 0) partialSum[wid] = sum;
            b.sync();

            if (lane < warp_num) sum = partialSum[lane];

            b.sync();

            for (int i = 1; i < reduce_blocks; i *= 2) { sum += g.shfl_xor(sum, i); }

            sum = g.shfl(sum, threadIdx.x / WARP_SIZE);
        }
        sum += 1e-6;

        for (int i = 0; i < iterations; i++) {
            int data_id = i * (reduceWidth << 2) + (seq_lane << 2);

            if (data_id < sequence_length) {
                if ((sequence_length - data_id) >= 4) {
                    vals[data_id] = data[i].x / sum;
                    vals[data_id + 1] = data[i].y / sum;
                    vals[data_id + 2] = data[i].z / sum;
                    vals[data_id + 3] = data[i].w / sum;
                } else {
                    vals[data_id] = data[i].x / sum;
                    if ((data_id + 1) < sequence_length) vals[data_id + 1] = data[i].y / sum;
                    if ((data_id + 2) < sequence_length) vals[data_id + 2] = data[i].z / sum;
                }
            }
        }
    }
}

template <typename T>
void launch_attn_softmax_v2(T* vals,
                            T* mask,
aiss's avatar
aiss committed
413
414
                            T* alibi,
                            float layer_scale,
aiss's avatar
aiss committed
415
416
417
418
419
420
421
422
                            bool triangular,
                            bool recompute,
                            bool local_attention,
                            int window_size,
                            int batch_size,
                            int heads,
                            int num_seq,
                            int sequence_length,
aiss's avatar
aiss committed
423
424
425
                            int head_offset,
                            int mask_stride,
                            int mp_size,
aiss's avatar
aiss committed
426
427
428
                            hipStream_t stream)
{
    int total_count = batch_size * heads * num_seq;
aiss's avatar
aiss committed
429
430
431
432
    int warp_num = ATTN_THREADS / WARP_SIZE;
    int reduce_width = ((sequence_length - 1) / ATTN_THREADS + 1);
    reduce_width = (int)pow(2.0, floor(log2((float)(reduce_width)))) * WARP_SIZE;
    dim3 grid_dim((total_count - 1) / (ATTN_THREADS / reduce_width) + 1);
aiss's avatar
aiss committed
433
434
435
436
437
    dim3 block_dim(ATTN_THREADS);

    const int iterations = (sequence_length - 1) / (reduce_width << 2) + 1;

    if (sequence_length <= 32768)
aiss's avatar
aiss committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
       hipLaunchKernelGGL(( attn_softmax_v2), dim3(grid_dim), dim3(block_dim), 0, stream, vals,
                                                            mask,
                                                            alibi,
                                                            layer_scale,
                                                            triangular,
                                                            recompute,
                                                            local_attention,
                                                            window_size,
                                                            total_count,
                                                            heads,
                                                            sequence_length,
                                                            num_seq,
                                                            head_offset,
                                                            mask_stride,
                                                            mp_size,
                                                            iterations,
                                                            reduce_width);
aiss's avatar
aiss committed
455
456
457
458
459
460
    else
        throw std::runtime_error("Unsupport Seq_Length!");
}

template void launch_attn_softmax_v2(float* vals,
                                     float* mask,
aiss's avatar
aiss committed
461
462
                                     float* alibi,
                                     float layer_scale,
aiss's avatar
aiss committed
463
464
465
466
467
468
469
470
                                     bool triangular,
                                     bool recompute,
                                     bool local_attention,
                                     int window_size,
                                     int batch_size,
                                     int heads,
                                     int num_seq,
                                     int sequence_length,
aiss's avatar
aiss committed
471
472
473
                                     int head_offset,
                                     int mask_stride,
                                     int mp_size,
aiss's avatar
aiss committed
474
475
476
                                     hipStream_t stream);
template void launch_attn_softmax_v2(__half* vals,
                                     __half* mask,
aiss's avatar
aiss committed
477
478
                                     __half* alibi,
                                     float layer_scale,
aiss's avatar
aiss committed
479
480
481
482
483
484
485
486
                                     bool triangular,
                                     bool recompute,
                                     bool local_attention,
                                     int window_size,
                                     int batch_size,
                                     int heads,
                                     int num_seq,
                                     int sequence_length,
aiss's avatar
aiss committed
487
488
489
                                     int head_offset,
                                     int mask_stride,
                                     int mp_size,
aiss's avatar
aiss committed
490
                                     hipStream_t stream);