test_zero_tiled.py 6.21 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
aiss's avatar
aiss committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

import copy

import torch
from deepspeed.runtime.zero.tiling import TiledLinear, TiledLinearReturnBias

import pytest


@pytest.mark.parametrize('in_splits,out_splits', [(1, 1), (2, 2), (5, 5), (32, 32)])
def test_tiled_init(in_splits, out_splits):
    in_f = 32
    out_f = 40
    base = torch.nn.Linear(in_f, out_f, bias=True)
    l = TiledLinear(in_f,
                    out_f,
                    bias=True,
                    init_linear=copy.deepcopy(base),
                    out_splits=out_splits,
                    in_splits=in_splits)

    for out_id in range(out_splits):
        for in_id in range(in_splits):
            local_l = l.linears[out_id][in_id]
            assert isinstance(local_l, torch.nn.Linear)

            rstart = l.out_parts[out_id]
            rstop = l.out_parts[out_id + 1]
            cstart = l.in_parts[in_id]
            cstop = l.in_parts[in_id + 1]

            local_out = rstop - rstart
            local_in = cstop - cstart
            assert local_l.weight.size()[1] == local_in, f'local[{out_id}][{in_id}].size {local_l.weight.size()}'
            assert local_l.weight.size()[0] == local_out

            test = base.weight[rstart:rstop, cstart:cstop]

            assert local_l.weight.size() == test.size()
            assert torch.equal(local_l.weight.data, test.data)

            if in_id == in_splits - 1:
                assert local_l.bias is not None
                assert local_l.bias.size()[0] == local_out
            else:
                assert local_l.bias is None


@pytest.mark.parametrize('in_splits,out_splits', [(0, 0), (33, 33)])
def test_tiled_baddim(in_splits, out_splits):
    dim = 32
    with pytest.raises(RuntimeError):
        l = TiledLinear(dim, dim, out_splits=out_splits, in_splits=in_splits)


@pytest.mark.skip(reason="seeing nondeterministic failures, skipping for now")
@pytest.mark.parametrize('bias', [False, True])
@pytest.mark.parametrize('in_splits,out_splits', [(1, 1), (2, 2)])
@pytest.mark.parametrize('in_f,out_f', [(32, 32), (23, 29), (29, 23)])
def test_tiled_forward(in_splits, out_splits, bias, in_f, out_f):
    base = torch.nn.Linear(in_f, out_f, bias=bias)
    test = TiledLinear(in_f,
                       out_f,
                       bias=bias,
                       init_linear=copy.deepcopy(base),
                       out_splits=out_splits,
                       in_splits=in_splits)

    inp = torch.rand(in_f)

    base_out = base(copy.deepcopy(inp))
    test_out = test(copy.deepcopy(inp))

    assert torch.allclose(base_out, test_out, rtol=1e-4)


@pytest.mark.skip(reason="seeing nondeterministic failures, skipping for now")
@pytest.mark.parametrize('bias', [False, True])
@pytest.mark.parametrize('in_splits,out_splits', [(1, 1), (2, 2)])
@pytest.mark.parametrize('in_f,out_f', [(32, 32), (23, 29), (29, 23)])
def test_tiled_backward(in_splits, out_splits, bias, in_f, out_f):
    base = torch.nn.Linear(in_f, out_f, bias=bias)
    test = TiledLinear(in_f,
                       out_f,
                       bias=bias,
                       init_linear=copy.deepcopy(base),
                       out_splits=out_splits,
                       in_splits=in_splits)

    inp = torch.rand(in_f)

    base_out = base(copy.deepcopy(inp))
    test_out = test(copy.deepcopy(inp))
    assert torch.allclose(base_out, test_out, rtol=1e-4)

    base_out.sum().backward()
    test_out.sum().backward()

    # compare grads
    for row in range(out_splits):
        rstart = test.out_parts[row]
        rstop = test.out_parts[row + 1]

        for col in range(in_splits):
            cstart = test.in_parts[col]
            cstop = test.in_parts[col + 1]

            local = test.linears[row][col]
            base_grad = base.weight.grad[rstart:rstop, cstart:cstop]
            assert torch.allclose(base_grad, local.weight.grad, rtol=1e-4)

            if local.bias is not None:
                base_grad = base.bias.grad[rstart:rstop]
                assert torch.allclose(base_grad, local.bias.grad, rtol=1e-4)


class LinearWrapper(torch.nn.Linear):
    """Returns its own bias to simulate Megatron-LM's behavior.

    Megatron-LM optionally delays the bias addition to fuse with a proceeding kernel.
    """
aiss's avatar
aiss committed
126

aiss's avatar
aiss committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    def forward(self, input):
        out = super().forward(input)
        return out, self.bias


@pytest.mark.skip(reason="seeing nondeterministic failures, skipping for now")
@pytest.mark.parametrize('bias', [False, True])
@pytest.mark.parametrize('in_splits,out_splits', [(1, 1), (2, 2)])
@pytest.mark.parametrize('in_f,out_f', [(32, 32), (23, 29), (29, 23)])
def test_tiled_returnbias_backward(in_splits, out_splits, bias, in_f, out_f):
    base = LinearWrapper(in_f, out_f, bias=bias)
    test = TiledLinearReturnBias(in_f,
                                 out_f,
                                 bias=bias,
                                 linear_cls=LinearWrapper,
                                 init_linear=copy.deepcopy(base),
                                 out_splits=out_splits,
                                 in_splits=in_splits)

    inp = torch.rand(in_f)

    base_out_t, base_out_b = base(copy.deepcopy(inp))
    test_out_t, test_out_b = test(copy.deepcopy(inp))
    assert torch.allclose(base_out_t, test_out_t, rtol=1e-4)
    if base_out_b is None:
        assert test_out_b is None
        base_out_b = torch.zeros_like(base_out_t)
        test_out_b = torch.zeros_like(test_out_t)
    else:
        assert test_out_b is not None
        assert torch.allclose(base_out_b, test_out_b, rtol=1e-4)

    (base_out_t + base_out_b).sum().backward()
    (test_out_t + test_out_b).sum().backward()

    # compare grads
    for row in range(out_splits):
        rstart = test.out_parts[row]
        rstop = test.out_parts[row + 1]

        for col in range(in_splits):
            cstart = test.in_parts[col]
            cstop = test.in_parts[col + 1]

            local = test.linears[row][col]
            base_grad = base.weight.grad[rstart:rstop, cstart:cstop]
            assert torch.allclose(base_grad, local.weight.grad, rtol=1e-4)

            if local.bias is not None:
                base_grad = base.bias.grad[rstart:rstop]
                assert torch.allclose(base_grad, local.bias.grad, rtol=1e-4)