"docs/en/vscode:/vscode.git/clone" did not exist on "c9ff18321d357554d33884ea80c57a7e2bb18b3c"
cpu_adam.cpp 10.2 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0

// DeepSpeed Team

aiss's avatar
aiss committed
6
7
#include "cpu_adam.h"
#include <torch/extension.h>
aiss's avatar
aiss committed
8
#include <cassert>
aiss's avatar
aiss committed
9
10
11
12
#include <iostream>
#include <memory>
#include <type_traits>
#include <unordered_map>
aiss's avatar
aiss committed
13
14
15

#if defined(__ENABLE_CUDA__)
#include <cuda_runtime_api.h>
aiss's avatar
aiss committed
16
17
18
19
#include "cublas_v2.h"
#include "cuda.h"
#include "curand.h"
#include "custom_cuda_layers.h"
aiss's avatar
aiss committed
20
#endif
aiss's avatar
aiss committed
21
22
23
24
25
26
27
28
29
30

static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;

// C++ interface

void Adam_Optimizer::Step_1(float* _params,
                            float* grads,
                            float* _exp_avg,
                            float* _exp_avg_sq,
                            size_t _param_size,
aiss's avatar
aiss committed
31
                            ds_half_precision_t* dev_params,
aiss's avatar
aiss committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
                            bool half_precision)
{
    size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
    Step_AVX<1>(&rounded_size,
                _params,
                grads,
                _exp_avg,
                _exp_avg_sq,
                _param_size,
                dev_params,
                half_precision);
#endif
    if (_param_size > rounded_size) {
        float betta1_minus1 = 1 - _betta1;
        float betta2_minus1 = 1 - _betta2;

        float step_size = -1 * _alpha / _bias_correction1;
        float w_decay = -1 * _alpha * _weight_decay;
aiss's avatar
aiss committed
51
52
        ds_half_precision_t* grads_cast_h;
        ds_half_precision_t* params_cast_h;
aiss's avatar
aiss committed
53
        if (half_precision) {
aiss's avatar
aiss committed
54
55
            grads_cast_h = reinterpret_cast<ds_half_precision_t*>(grads);
            params_cast_h = reinterpret_cast<ds_half_precision_t*>(_params);
aiss's avatar
aiss committed
56
57
58
59
60
61
        }

        for (size_t t = rounded_size; t < _param_size; t += TILE) {
            size_t copy_size = TILE;
            if ((t + TILE) > _param_size) copy_size = _param_size - t;
            size_t offset = copy_size + t;
aiss's avatar
aiss committed
62
#if defined(__ENABLE_CUDA__)
aiss's avatar
aiss committed
63
            if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
aiss's avatar
aiss committed
64
#endif
aiss's avatar
aiss committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#pragma omp parallel for
            for (size_t k = t; k < offset; k++) {
                float grad = half_precision ? (float)grads_cast_h[k] : grads[k];
                float param = half_precision ? (float)params_cast_h[k] : _params[k];
                float momentum = _exp_avg[k];
                float variance = _exp_avg_sq[k];
                if (_weight_decay > 0 && !_adamw_mode) { grad = param * _weight_decay + grad; }
                momentum = momentum * _betta1;
                momentum = grad * betta1_minus1 + momentum;

                variance = variance * _betta2;
                grad = grad * grad;
                variance = grad * betta2_minus1 + variance;

                grad = sqrt(variance);
                grad = grad * _bias_correction2 + _eps;
                grad = momentum / grad;
                if (_weight_decay > 0 && _adamw_mode) { param += w_decay * param; }
                param = grad * step_size + param;
aiss's avatar
aiss committed
84
#if defined(__ENABLE_CUDA__)
aiss's avatar
aiss committed
85
                if (dev_params) _doubled_buffer[_buf_index][k - t] = param;
aiss's avatar
aiss committed
86
#endif
aiss's avatar
aiss committed
87
                if (half_precision)
aiss's avatar
aiss committed
88
                    params_cast_h[k] = (ds_half_precision_t)param;
aiss's avatar
aiss committed
89
90
91
92
93
                else
                    _params[k] = param;
                _exp_avg[k] = momentum;
                _exp_avg_sq[k] = variance;
            }
aiss's avatar
aiss committed
94
#if defined(__ENABLE_CUDA__)
aiss's avatar
aiss committed
95
96
97
98
99
100
            if (dev_params) {
                launch_param_update(
                    _doubled_buffer[_buf_index], dev_params + t, (copy_size), _streams[_buf_index]);

                _buf_index = !_buf_index;
            }
aiss's avatar
aiss committed
101
#endif
aiss's avatar
aiss committed
102
103
104
105
106
107
108
109
110
        }
    }
}

void Adam_Optimizer::Step_4(float* _params,
                            float* grads,
                            float* _exp_avg,
                            float* _exp_avg_sq,
                            size_t _param_size,
aiss's avatar
aiss committed
111
                            ds_half_precision_t* dev_params,
aiss's avatar
aiss committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
                            bool half_precision)
{
    size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
    Step_AVX<4>(&rounded_size,
                _params,
                grads,
                _exp_avg,
                _exp_avg_sq,
                _param_size,
                dev_params,
                half_precision);
#endif
    if (_param_size > rounded_size)
        Step_1((_params + rounded_size),
               (grads + rounded_size),
               (_exp_avg + rounded_size),
               (_exp_avg_sq + rounded_size),
               (_param_size - rounded_size),
               (dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
               half_precision);
}

int create_adam_optimizer(int optimizer_id,
                          float alpha = 1e-3,
                          float betta1 = 0.9,
                          float betta2 = 0.999,
                          float eps = 1e-8,
                          float weight_decay = 0,
                          bool adamw_mode = true,
                          bool should_log = false)
{
    auto opt =
        std::make_shared<Adam_Optimizer>(alpha, betta1, betta2, eps, weight_decay, adamw_mode);

    s_optimizers[optimizer_id] = opt;

    if (should_log) {
        std::string avx_type = "";
#if defined(__AVX512__)
        avx_type = "AVX512";
#else
#if defined(__AVX256__)
        avx_type = "AVX2";
#else
        avx_type = "scalar";
#endif
#endif

        printf("Adam Optimizer #%d is created with %s arithmetic capability.\n",
               optimizer_id,
               avx_type.c_str());
        printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
               alpha,
               betta1,
               betta2,
               weight_decay,
               (int)adamw_mode);
    }

    return 0;
}

void Adam_Optimizer::Step_8(float* _params,
                            float* grads,
                            float* _exp_avg,
                            float* _exp_avg_sq,
                            size_t _param_size,
aiss's avatar
aiss committed
180
                            ds_half_precision_t* dev_params,
aiss's avatar
aiss committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
                            bool half_precision)
{
    size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
    Step_AVX<8>(&rounded_size,
                _params,
                grads,
                _exp_avg,
                _exp_avg_sq,
                _param_size,
                dev_params,
                half_precision);
#endif
    if (_param_size > rounded_size)
        Step_4((_params + rounded_size),
               (grads + rounded_size),
               (_exp_avg + rounded_size),
               (_exp_avg_sq + rounded_size),
               (_param_size - rounded_size),
               (dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
               half_precision);
}

int ds_adam_step(int optimizer_id,
                 size_t step,
                 float lr,
                 float beta1,
                 float beta2,
                 float epsilon,
                 float weight_decay,
                 bool bias_correction,
                 torch::Tensor& params,
                 torch::Tensor& grads,
                 torch::Tensor& exp_avg,
                 torch::Tensor& exp_avg_sq)
{
    auto params_c = params.contiguous();
    auto grads_c = grads.contiguous();
    auto exp_avg_c = exp_avg.contiguous();
    auto exp_avg_sq_c = exp_avg_sq.contiguous();

    // assert(params.options().dtype() == grads.options().dtype());

    float* params_ptr = (float*)params_c.data_ptr();
    float* grads_ptr = (float*)grads_c.data_ptr();
    float* exp_avg_ptr = (float*)exp_avg_c.data_ptr();
    float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();

    std::shared_ptr<Adam_Optimizer> opt =
        std::static_pointer_cast<Adam_Optimizer>(s_optimizers[optimizer_id]);
    opt->IncrementStep(step, beta1, beta2);
    opt->update_state(lr, epsilon, weight_decay, bias_correction);

    opt->Step_8(params_ptr,
                grads_ptr,
                exp_avg_ptr,
                exp_avg_sq_ptr,
aiss's avatar
aiss committed
238
                params_c.numel(),
aiss's avatar
aiss committed
239
240
241
                nullptr,
                (params.options().dtype() == at::kHalf));

aiss's avatar
aiss committed
242
#if defined(__ENABLE_CUDA__)
aiss's avatar
aiss committed
243
    opt->SynchronizeStreams();
aiss's avatar
aiss committed
244
#endif
aiss's avatar
aiss committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    return 0;
}

int ds_adam_step_plus_copy(int optimizer_id,
                           size_t step,
                           float lr,
                           float beta1,
                           float beta2,
                           float epsilon,
                           float weight_decay,
                           bool bias_correction,
                           torch::Tensor& params,
                           torch::Tensor& grads,
                           torch::Tensor& exp_avg,
                           torch::Tensor& exp_avg_sq,
                           torch::Tensor& gpu_params)
{
aiss's avatar
aiss committed
262
#if defined(__ENABLE_CUDA__)
aiss's avatar
aiss committed
263
264
265
266
267
268
269
270
    auto params_c = params.contiguous();
    auto gpu_params_c = gpu_params.contiguous();
    auto exp_avg_c = exp_avg.contiguous();
    auto exp_avg_sq_c = exp_avg_sq.contiguous();
    auto grads_c = grads.contiguous();

    float* params_ptr = (float*)params_c.data_ptr();
    float* grads_ptr = (float*)grads_c.data_ptr();
aiss's avatar
aiss committed
271
    ds_half_precision_t* gpu_params_ptr = (ds_half_precision_t*)gpu_params_c.data_ptr();
aiss's avatar
aiss committed
272
273
274
275
276
277
278
279
280
281
282
    float* exp_avg_ptr = (float*)exp_avg_c.data_ptr();
    float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();

    std::shared_ptr<Adam_Optimizer> opt =
        std::static_pointer_cast<Adam_Optimizer>(s_optimizers[optimizer_id]);
    opt->IncrementStep(step, beta1, beta2);
    opt->update_state(lr, epsilon, weight_decay, bias_correction);
    opt->Step_8(params_ptr,
                grads_ptr,
                exp_avg_ptr,
                exp_avg_sq_ptr,
aiss's avatar
aiss committed
283
                params_c.numel(),
aiss's avatar
aiss committed
284
285
286
287
                gpu_params_ptr,
                (params.options().dtype() == at::kHalf));

    opt->SynchronizeStreams();
aiss's avatar
aiss committed
288
289
290
#else
    assert(false);
#endif
aiss's avatar
aiss committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    return 0;
}

int destroy_adam_optimizer(int optimizer_id)
{
    s_optimizers.erase(optimizer_id);

    return 0;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
    m.def("adam_update", &ds_adam_step, "DeepSpeed CPU Adam update (C++)");
    m.def("adam_update_copy",
          &ds_adam_step_plus_copy,
          "DeepSpeed CPU Adam update and param copy (C++)");
    m.def("create_adam", &create_adam_optimizer, "DeepSpeed CPU Adam (C++)");
    m.def("destroy_adam", &destroy_adam_optimizer, "DeepSpeed CPU Adam destroy (C++)");
}