test_cuda_backward.py 11.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import pytest
import json
import random
import time
import copy
from torch import nn
from modelingpreln import BertEncoder as BertEncoderPreln
from modeling import BertEncoder as BertEncoderPostln
from modeling import BertConfig, BertLayerNorm
from deepspeed import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig
15
import deepspeed
16
17
18

import sys

19
#if not deepspeed.ops.__installed_ops__['transformer']:
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
20
21
22
pytest.skip(
    "transformer kernels are temporarily disabled because of unexplained failures",
    allow_module_level=True)
23

24
25
26
27
28

def check_equal(first, second, atol=1e-2, verbose=False):
    diction_x = {}
    diction_y = {}

29
30
31
    if verbose:
        for i, (x, y) in enumerate(zip(first, second)):
            print(x[1], y[1])
32
33
34
35
36
37
38
39
40
41
42
43

    for i, (x, y) in enumerate(zip(first, second)):
        k = 0
        while (diction_x.get((k, x[1])) is not None):
            k = k + 1
        diction_x[k, x[1]] = x[0]
        k = 0
        while (diction_y.get((k, y[1])) is not None):
            k = k + 1
        diction_y[k, y[1]] = y[0]
    if verbose:
        print()
44
45
        for i, (x, y) in enumerate(zip(diction_x, diction_y)):
            print(x, y)
46
47
48

    for i, (x, y) in enumerate(zip(diction_x, diction_y)):
        if (x[0] == 1): continue
49
50
        if verbose:
            print("checking ", x[1], ":")
51
52
53
54
        y = diction_y[x[0], x[1]]
        x = diction_x[x[0], x[1]]
        x = x.cpu().detach().numpy()
        y = y.cpu().detach().numpy()
55
56
57
        if verbose:
            print(x)
            print(y)
58
59
60
61
62
63
64
65
66
67
68

        avgx = np.sum(abs(x), dtype=float)
        countx = x.shape[0]
        for i in range(len(x.shape) - 1):
            countx *= x.shape[i + 1]
            avgx = np.sum(avgx)
        tollerance = 1
        if avgx != float('inf') and avgx != -float('inf'):
            avgx = avgx / countx
            tollerance = avgx * atol
        if verbose:
69
            print("tollerance is ", tollerance)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
            print("x = {}".format(x.flatten()))
            print("y = {}".format(y.flatten()))
            print('-' * 80)
        np.testing.assert_allclose(x, y, err_msg="Index: {}".format(i), atol=tollerance)


def zero_grad(variables):
    for variable in variables:
        variable.grad.zero_()


device = torch.device("cuda")
kwargs_fp32 = {'dtype': torch.float, 'device': device, 'requires_grad': True}
kwargs_fp16 = {'dtype': torch.half, 'device': device, 'requires_grad': True}


class DSEncoder(nn.Module):
    def __init__(self, config, weights, biases):
        super(DSEncoder, self).__init__()
        self.FinalLayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.layer = nn.ModuleList([
91
            copy.deepcopy(DeepSpeedTransformerLayer(config,
92
93
                                                    weights,
                                                    biases))
94
            for _ in range(config.num_hidden_layers)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        ])
        self.grads = []
        self.pre_or_post = config.pre_layer_norm

    def forward(self,
                hidden_states,
                attention_mask,
                output_all_encoded_layers=True,
                checkpoint_activations=False):
        all_encoder_layers = []

        def custom(start, end):
            def custom_forward(*inputs):
                layers = self.layer[start:end]
                x_ = inputs[0]
                for layer in layers:
                    x_ = layer(x_, inputs[1])
                return x_

            return custom_forward

        if checkpoint_activations:
            l = 0
            num_layers = len(self.layer)
            chunk_length = math.ceil(math.sqrt(num_layers))
            while l < num_layers:
                hidden_states = checkpoint.checkpoint(custom(l,
                                                             l + chunk_length),
                                                      hidden_states,
                                                      attention_mask * 1)
                l += chunk_length
            # decoder layers
        else:
            for i, layer_module in enumerate(self.layer):
129
130
131
                hidden_states = layer_module(hidden_states,
                                             attention_mask,
                                             grads=self.grads)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
                hidden_states.register_hook(
                    lambda x,
                    self=self: self.grads.append([x,
                                                  "hidden_state"]))

                if output_all_encoded_layers:
                    all_encoder_layers.append(hidden_states)

        if not output_all_encoded_layers or checkpoint_activations:
            if (self.pre_or_post):
                hidden_states = self.FinalLayerNorm(hidden_states)
            all_encoder_layers.append(hidden_states)
        return all_encoder_layers

    def get_grads(self):
        return self.grads


def create_models(ds_config):
    bert_config = BertConfig(vocab_size_or_config_json_file=119547,
                             hidden_size=ds_config.hidden_size,
                             num_hidden_layers=ds_config.num_hidden_layers,
                             num_attention_heads=ds_config.heads,
155
                             intermediate_size=ds_config.intermediate_size,
156
157
158
                             hidden_act="gelu",
                             hidden_dropout_prob=ds_config.hidden_dropout_ratio,
                             attention_probs_dropout_prob=ds_config.attn_dropout_ratio,
159
                             max_position_embeddings=512,
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
                             type_vocab_size=2,
                             initializer_range=ds_config.initializer_range)

    weights = []
    biases = []

    for i in range(4):
        weights.append(
            nn.Parameter(torch.Tensor(ds_config.hidden_size,
                                      ds_config.hidden_size)))
        weights[i].data.normal_(mean=0.0, std=ds_config.initializer_range)

    weights.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    weights[4].data.fill_(1.0)
    weights.append(
175
        nn.Parameter(torch.Tensor(ds_config.intermediate_size,
176
177
178
179
                                  ds_config.hidden_size)))
    weights[5].data.normal_(mean=0.0, std=ds_config.initializer_range)
    weights.append(
        nn.Parameter(torch.Tensor(ds_config.hidden_size,
180
                                  ds_config.intermediate_size)))
181
182
183
184
185
186
187
188
189
    weights[6].data.normal_(mean=0.0, std=ds_config.initializer_range)
    weights.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    weights[7].data.fill_(1.0)

    biases.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    biases[0].data.zero_()
    for i in range(4):
        biases.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
        biases[i + 1].data.zero_()
190
    biases.append(nn.Parameter(torch.Tensor(ds_config.intermediate_size)))
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    biases[5].data.zero_()
    biases.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    biases[6].data.zero_()
    biases.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    biases[7].data.zero_()

    if (ds_config.pre_layer_norm):
        bert_encoder = BertEncoderPreln(bert_config, weights, biases)
    else:
        bert_encoder = BertEncoderPostln(bert_config, weights, biases)
    ds_encoder = DSEncoder(ds_config, weights, biases)

    if ds_config.fp16:
        bert_encoder.half()
        ds_encoder.half()

    bert_encoder.cuda()
    ds_encoder.cuda()

    return bert_encoder, ds_encoder


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)


219
def run_backward(ds_config, seq_len, atol=1e-2, verbose=False):
220
221
222
223
224
225
    set_seed(123)
    bert_encoder, ds_encoder = create_models(ds_config)

    # prepare test data
    kwargs = kwargs_fp16 if ds_config.fp16 else kwargs_fp32
    hidden_states = torch.randn(ds_config.batch_size,
226
                                seq_len,
227
228
                                ds_config.hidden_size,
                                **kwargs)
229
230
    input_mask = torch.randn(ds_config.batch_size, 1, 1, seq_len, **kwargs)
    Y = torch.randn(ds_config.batch_size, seq_len, ds_config.hidden_size, **kwargs)
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    # run baseline
    base_results = bert_encoder(hidden_states,
                                input_mask,
                                output_all_encoded_layers=False,
                                checkpoint_activations=False)

    loss = (Y - base_results[0]).pow(2).sum()
    loss.backward()
    base_grads = bert_encoder.get_grads()

    # run ds
    ds_results = ds_encoder(hidden_states,
                            input_mask,
                            output_all_encoded_layers=False,
                            checkpoint_activations=False)

    loss = (Y - ds_results[0]).pow(2).sum()
    loss.backward()
    ds_grads = ds_encoder.get_grads()

    # check grads
    check_equal(base_grads, ds_grads, atol=atol, verbose=verbose)


256
#test_backward[3-1024-120-16-24-True-True-0.05]
257
258
#test_backward[3-1024-52-16-24-False-True-0.2]
# 3-128-54-2-24-False-True-0.2
259
260
@pytest.mark.parametrize('batch_size, hidden_size, seq_len, heads, num_layers, is_preln, use_fp16, atol',
                         [
261
262
263
                             (3,1024,119,16,24,True,False, 0.05),
                             (3,1024,115,16,24,True,True, 0.05),
                             (1024,128,10,2,2,False,False, 0.1),
264
265
266
                             #(3,1024,52,16,24,False,True, 0.2),
                             #(3,128,51,2,24,False,False, 0.1),
                             #(3,128,54,2,24,False,True, 0.2),
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                         ]) # yapf: disable
def test_backward(batch_size,
                  hidden_size,
                  seq_len,
                  heads,
                  num_layers,
                  is_preln,
                  use_fp16,
                  atol):
    # Only run fp16 test cases on devices with 7+ capability.
    major, _ = torch.cuda.get_device_capability()
    if major < 7 and (use_fp16 is True or is_preln is False):
        return

    ds_config = DeepSpeedTransformerConfig()
    ds_config.layer_id = None
    ds_config.batch_size = batch_size
    ds_config.hidden_size = hidden_size
285
    ds_config.intermediate_size = hidden_size
286
287
288
289
290
291
292
293
    ds_config.heads = heads
    ds_config.attn_dropout_ratio = 0.0
    ds_config.hidden_dropout_ratio = 0.0
    ds_config.num_hidden_layers = num_layers
    ds_config.pre_layer_norm = is_preln
    ds_config.initializer_range = 0.02
    ds_config.fp16 = use_fp16

294
    run_backward(ds_config, seq_len, atol=atol)
295
296


Jeff Rasley's avatar
Jeff Rasley committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#@pytest.mark.parametrize('batch_size, hidden_size, seq_len, heads, num_layers, is_preln, use_fp16, atol',
#                         [
#                             (3,1024,128,16,24,True,False, 0.07),
#                             (3,1024,128,16,24,True,True, 0.05),
#                             (3,1024,128,16,24,False,False, 0.1),
#                             (3,1024,128,16,24,False,True, 0.2),
#                         ]) # yapf: disable
#def test_backward_stochastic(batch_size,
#                             hidden_size,
#                             seq_len,
#                             heads,
#                             num_layers,
#                             is_preln,
#                             use_fp16,
#                             atol):
#    # Only run fp16 test cases on devices with 7+ capability.
#    major, _ = torch.cuda.get_device_capability()
#    if major < 7 and (use_fp16 is True or is_preln is False):
#        return
#
#    ds_config = DeepSpeedTransformerConfig()
#    ds_config.layer_id = None
#    ds_config.batch_size = batch_size
#    ds_config.hidden_size = hidden_size
321
#    ds_config.intermediate_size = 4 * hidden_size
Jeff Rasley's avatar
Jeff Rasley committed
322
323
324
325
326
327
328
329
330
331
332
#    ds_config.max_seq_length = seq_len
#    ds_config.heads = heads
#    ds_config.attn_dropout_ratio = 0.0
#    ds_config.hidden_dropout_ratio = 0.0
#    ds_config.num_hidden_layers = num_layers
#    ds_config.pre_layer_norm = is_preln
#    ds_config.initializer_range = 0.02
#    ds_config.fp16 = use_fp16
#    ds_config.stochastic_mode = True
#
#    run_backward(ds_config, atol=atol)