test_multi_output_model.py 5.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import deepspeed
import argparse
import pytest
from pytest import approx
import json
import os
from common import distributed_test
from simple_model import args_from_dict
from multi_output_model import MultiOutputModel, multi_output_dataloader


def create_config_dict(micro_batch_size, grad_accumulation_steps, world_size):
    return {
        "train_micro_batch_size_per_gpu": micro_batch_size,
        "gradient_accumulation_steps": grad_accumulation_steps,
        "train_batch_size": micro_batch_size * grad_accumulation_steps * world_size,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True
        }
    }


def test_two_output_model(tmpdir):
    gradient_accumulation_steps = 2
    micro_batch_size = 1
    world_size = 1
    config_dict = create_config_dict(micro_batch_size,
                                     gradient_accumulation_steps,
                                     world_size)

    hidden_dim = 10
    weight_value = 0.1
    args = args_from_dict(tmpdir, config_dict)

    model = MultiOutputModel(hidden_dim, weight_value)

    @distributed_test(world_size=[1])
    def _test_two_output_model(args, model, hidden_dim):
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())
        total_samples = 4
        data_loader = multi_output_dataloader(model=model,
                                              total_samples=total_samples,
                                              hidden_dim=hidden_dim,
                                              device=model.device,
                                              inputs=[1.0,
                                                      2.0],
                                              targets=[1,
                                                       2])
        for n, batch in enumerate(data_loader):
            assert len(batch) % 2 == 0, \
                 f"multi_output_dataloader failed to return even number of data samples (input+target)"

            midpoint = len(batch) // 2
            inputs, targets = batch[:midpoint], batch[midpoint:]
            loss_tuple = model(inputs, targets)

            expected_loss = torch.tensor(2.302734375,
                                         dtype=torch.half,
                                         device=model.device)
            for loss in loss_tuple:
                assert loss.shape == torch.Size([])
                assert loss.item() == approx(expected_loss.item())

            summed_loss = sum(loss_tuple)
            scaled_loss = model.backward(summed_loss)
            expected_scaled_loss = summed_loss / gradient_accumulation_steps
            assert scaled_loss.item() == approx(expected_scaled_loss.item())

            model.step()

    _test_two_output_model(args=args, model=model, hidden_dim=hidden_dim)


def test_three_output_model(tmpdir):
    gradient_accumulation_steps = 3
    micro_batch_size = 1
    world_size = 1
    config_dict = create_config_dict(micro_batch_size,
                                     gradient_accumulation_steps,
                                     world_size)

    hidden_dim = 10
    weight_value = 0.1
    args = args_from_dict(tmpdir, config_dict)

    model = MultiOutputModel(hidden_dim, weight_value)

    @distributed_test(world_size=[1])
    def _test_three_output_model(args, model, hidden_dim):
        model, _, _, _ = deepspeed.initialize(args=args,
                                              model=model,
                                              model_parameters=model.parameters())

        total_samples = gradient_accumulation_steps * micro_batch_size * 2
        data_loader = multi_output_dataloader(model=model,
                                              total_samples=total_samples,
                                              hidden_dim=hidden_dim,
                                              device=model.device,
                                              inputs=[1.0,
                                                      2.0,
                                                      3.0],
                                              targets=[1,
                                                       2,
                                                       3])
        for n, batch in enumerate(data_loader):
            assert len(batch) % 2 == 0, \
                 f"multi_output_dataloader failed to return even number of data samples (input+target)"

            midpoint = len(batch) // 2
            inputs, targets = batch[:midpoint], batch[midpoint:]
            loss_tuple = model(inputs, targets)
            assert len(loss_tuple) == 3

            expected_loss = torch.tensor(2.302734375,
                                         dtype=torch.half,
                                         device=model.device)

            for loss in loss_tuple:
                assert loss.shape == torch.Size([])
                assert loss.item() == approx(expected_loss.item())

            summed_loss = sum(loss_tuple)
            scaled_loss = model.backward(summed_loss)
            expected_scaled_loss = summed_loss / gradient_accumulation_steps
            assert scaled_loss.item() == approx(expected_scaled_loss.item())

            model.step()

    _test_three_output_model(args=args, model=model, hidden_dim=hidden_dim)