test_sparse_attention.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# DeepSpeed note, some parts of code taken & adapted from commit c368a9fd1b2c9dee4cc94de9a6bb0be3d447be41
# https://github.com/ptillet/torch-blocksparse/blob/master/tests/test_softmax.py
# https://github.com/ptillet/torch-blocksparse/blob/master/tests/test_matmul.py
# https://github.com/ptillet/torch-blocksparse/blob/master/tests/utils

import pytest
import torch


def test_sparse_attention_module_availability():
    try:
        from deepspeed.ops import sparse_attention
    except ImportError:
        print("Sparse Attention Module is not installed!")
        return False
    return True


def test_matmul_module_availability():
    try:
        from deepspeed.ops.sparse_attention import MatMul
    except ImportError:
        print("Sparse MatMul Module is not installed!")
        return False
    return True


def test_softmax_module_availability():
    try:
        from deepspeed.ops.sparse_attention import Softmax
    except ImportError:
        print("Sparse Softmax Module is not installed!")
        return False
    return True


def test_sparsityconfig_module_availability():
    try:
        from deepspeed.ops.sparse_attention import SparsityConfig
    except ImportError:
        print("SparsityConfig Module is not installed!")
        return False
    return True


def test_densesparsityconfig_module_availability():
    try:
        from deepspeed.ops.sparse_attention import DenseSparsityConfig
    except ImportError:
        print("DenseSparsityConfig Module is not installed!")
        return False
    return True


def test_fixedsparsityconfig_module_availability():
    try:
        from deepspeed.ops.sparse_attention import FixedSparsityConfig
    except ImportError:
        print("FixedSparsityConfig Module is not installed!")
        return False
    return True


def test_variablesparsityconfig_module_availability():
    try:
        from deepspeed.ops.sparse_attention import VariableSparsityConfig
    except ImportError:
        print("VariableSparsityConfig Module is not installed!")
        return False
    return True


def test_bigbirdsparsityconfig_module_availability():
    try:
        from deepspeed.ops.sparse_attention import BigBirdSparsityConfig
    except ImportError:
        print("BigBirdSparsityConfig Module is not installed!")
        return False
    return True


def test_bslongformersparsityconfig_module_availability():
    try:
        from deepspeed.ops.sparse_attention import BSLongformerSparsityConfig
    except ImportError:
        print("BSLongformerSparsityConfig Module is not installed!")
        return False
    return True


def test_sparseselfattention_module_availability():
    try:
        from deepspeed.ops.sparse_attention import SparseSelfAttention
    except ImportError:
        print("SparseSelfAttention Module is not installed!")
        return False
    return True


def test_bertsparseselfattention_module_availability():
    try:
        from deepspeed.ops.sparse_attention import BertSparseSelfAttention
    except ImportError:
        print("BertSparseSelfAttention Module is not installed!")
        return False
    return True


def test_sparseattentionutils_availability():
    try:
        from deepspeed.ops.sparse_attention import SparseAttentionUtils
    except ImportError:
        print("SparseAttentionUtils Module is not installed!")
        return False
    return True


def test_cpp_utils_availability():
    try:
        from deepspeed.ops.sparse_attention import cpp_utils
    except ImportError:
        print("Sparse Attention cpp_utils Module is not installed!")
        return False
    return True


def dense_to_sparse(w, mask, block):
    """Converts dense matrix with explicit zeros to sparse matrix
    """
    Z = w.size(0)
    ret = torch.empty((Z, mask.sum(), block, block), dtype=w.dtype, device=w.device)
    nnz = mask.nonzero()
    h, i, j = nnz[:, 0], nnz[:, 1], nnz[:, 2]
    for zz in range(Z):
        for idx, (hh, ii, jj) in enumerate(zip(h, i, j)):
            ret[zz, idx, :, :] = w[zz, hh, ii*block: (ii+1)*block, jj*block: (jj+1)*block]
    return ret


def sparse_to_dense(w, mask, block, zero=0):
    """Converts sparse matrix to dense matrix with explicit zeros
    """
    maskedw = w.clone()
    for bz, wz in enumerate(range(0, w.size(0))):
        for bh, wh in enumerate(range(0, w.size(1))):
            for bi, wi in enumerate(range(0, w.size(2), block)):
                for bj, wj in enumerate(range(0, w.size(3), block)):
                    if mask[bh, bi, bj] == 0:
                        maskedw[wz, wh, wi:wi + block, wj:wj + block] = zero
                    #maskedw[wz, wh, wi : wi+block, wj : wj+block] *= mask[bh, bi, bj]
    return maskedw


def allclose(x, y):
    assert x.dtype == y.dtype
    rtol, atol = {torch.float32: (1e-4, 1e-5), torch.float16: (1e-2, 1e-3)}[x.dtype]
    return torch.allclose(x, y, rtol=rtol, atol=atol)


def make_layout(rho, shape):
    probs = torch.Tensor([rho, 1 - rho])
    generator = torch.distributions.categorical.Categorical(probs)
    layout = generator.sample(shape)
    return layout


def run_softmax_reference(x, scale, dx, kp_mask, attn_mask, layout, block):
    x = sparse_to_dense(x, layout, block, zero=float('-inf'))
    x.retain_grad()
    if kp_mask is not None:
        bcattn_mask = attn_mask[None, None, :, :] + torch.zeros_like(x)
        x[bcattn_mask == 0] = float('-inf')
        y = torch.softmax(x * scale + kp_mask[:, None, None, :], -1)
    else:
        y = torch.softmax(x * scale, -1)
    y.backward(dx)
    dx = x.grad.clone()
    dx = dense_to_sparse(dx, layout, block)
    y = dense_to_sparse(y, layout, block)
    return y, dx


def run_softmax_sparse(x, scale, dx, kp_mask, attn_mask, layout, block):
    from deepspeed.ops.sparse_attention import Softmax
    sparse_softmax = Softmax(layout, block, bench=False)
    dx = dense_to_sparse(dx, layout, block)
    x = dense_to_sparse(x, layout, block)
    x.retain_grad()
    y = sparse_softmax(x,
                       scale=scale,
                       key_padding_mask=kp_mask,
                       key_padding_mask_mode='add',
                       attn_mask=attn_mask,
                       attn_mask_mode='mul')
    y.backward(dx)
    dx = x.grad.clone()
    x.grad.zero_()
    return x, dx


def init_softmax_inputs(Z, H, M, N, scale, rho, block, dtype, dense_x=True, layout=None):
    if layout is None:
        layout = make_layout(rho, (H, M // block, N // block))
    if dense_x:
        x = torch.rand((Z, H, M, N), dtype=dtype, requires_grad=True, device='cuda')
    else:
        x = torch.rand((Z,
                        layout.sum(),
                        block,
                        block),
                       dtype=dtype,
                       requires_grad=True,
                       device='cuda')
    dx = torch.rand_like(x)
    bool_attn_mask = torch.randint(low=0,
                                   high=2,
                                   size=(N,
                                         N),
                                   dtype=torch.bool,
                                   requires_grad=False,
                                   device='cuda')
    fp_attn_mask = bool_attn_mask.type(dtype)
    kp_mask = torch.randint(low=0,
                            high=2,
                            size=(Z,
                                  N),
                            dtype=dtype,
                            requires_grad=False,
                            device='cuda')
    kp_mask[kp_mask == 1.] = float('-inf')
    return layout, x, dx, bool_attn_mask, fp_attn_mask, kp_mask


def _skip_on_cuda_compatability():
Jeff Rasley's avatar
Jeff Rasley committed
235
    pytest.skip("Skip these tests for now until we get our docker image fixed.")
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    if torch.cuda.get_device_capability()[0] != 7:
        pytest.skip("needs compute capability 7; v100")
    cuda_major = int(torch.version.cuda.split('.')[0]) * 10
    cuda_minor = int(torch.version.cuda.split('.')[1])
    cuda_version = cuda_major + cuda_minor
    if cuda_version != 101 and cuda_version != 102:
        pytest.skip("requires cuda 10.1 or 10.2")


@pytest.mark.parametrize("block", [16, 32])
@pytest.mark.parametrize("width", [256, 576])
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
def test_softmax(block, width, dtype):
    _skip_on_cuda_compatability()
    Z = 2
    H = 4
    scale = 0.4
    rho = 0.4
    M = N = width
    layout, x, dx, bool_attn_mask, fp_attn_mask, kp_mask = init_softmax_inputs(Z, H, M, N, scale, rho, block, dtype, layout=None)
    ref_y, ref_dx = run_softmax_reference(x, scale, dx, kp_mask, bool_attn_mask, layout, block)
    st_y, st_dx = run_softmax_sparse(x, scale, dx, kp_mask, fp_attn_mask, layout, block)
    assert allclose(ref_y, st_y)
    assert allclose(ref_dx, st_dx)


def run_matmul_reference(x, w, mode, trans_a, trans_b, layout, block, dy):
    x = sparse_to_dense(x, layout, block) if mode == 'dsd' else x
    w = sparse_to_dense(w, layout, block) if mode == 'dds' else w
    x.retain_grad()
    w.retain_grad()
    xx = x.transpose(2, 3) if trans_a else x
    ww = w.transpose(2, 3) if trans_b else w
    y = torch.matmul(xx, ww)
    y = sparse_to_dense(y, layout, block) if mode == 'sdd' else y
    y.backward(dy)
    dx = x.grad.clone()
    dw = w.grad.clone()
    x.grad.zero_()
    w.grad.zero_()
    y = dense_to_sparse(y, layout, block) if mode == 'sdd' else y
    dx = dense_to_sparse(dx, layout, block) if mode == 'dsd' else dx
    dw = dense_to_sparse(dw, layout, block) if mode == 'dds' else dw
    return y, dx, dw


def run_matmul_sparse(x, w, mode, trans_a, trans_b, layout, block, dy):
    from deepspeed.ops.sparse_attention import MatMul
    x = dense_to_sparse(x, layout, block) if mode == 'dsd' else x
    w = dense_to_sparse(w, layout, block) if mode == 'dds' else w
    dy = dense_to_sparse(dy, layout, block) if mode == 'sdd' else dy
    op = MatMul(layout, block, mode, trans_a=trans_a, trans_b=trans_b)
    x.retain_grad()
    w.retain_grad()
    y = op(x, w)
    y.backward(dy)
    dx = x.grad.clone()
    dw = w.grad.clone()
    x.grad.zero_()
    return y, dx, dw


def init_matmul_inputs(Z, H, M, N, K, rho, mode, trans_a, trans_b, block, dtype, layout):
    torch.manual_seed(1)
    AS0 = K if trans_a else M
    AS1 = M if trans_a else K
    BS0 = N if trans_b else K
    BS1 = K if trans_b else N
    shape = {'sdd': (M, N), 'dsd': (AS0, AS1), 'dds': (BS0, BS1)}[mode]
    x = torch.rand((Z, H, AS0, AS1), dtype=dtype, requires_grad=True, device='cuda')
    w = torch.rand((Z, H, BS0, BS1), dtype=dtype, requires_grad=True, device='cuda')
    dy = torch.rand((Z, H, M, N), dtype=dtype, device='cuda')
    if layout is None:
        layout = make_layout(rho, (H, shape[0] // block, shape[1] // block))
    else:
        assert list(layout.shape) == [H, shape[0] // block, shape[1] // block]
    x.retain_grad()
    w.retain_grad()
    return x, w, dy, shape, layout

testdata = [
      (16, dtype, mode, trans_a, trans_b)\
         for dtype in [torch.float16, torch.float32]\
         for mode in ['sdd', 'dsd', 'dds']\
         for trans_a   in [False, True]\
         for trans_b   in [False, True]\
   ] + [
      (block, torch.float16, mode, False, False)\
         for block in [16, 32, 64]\
         for mode in ['sdd', 'dsd', 'dds']\
   ]


@pytest.mark.parametrize("block, dtype, mode, trans_a, trans_b", testdata)
def test_matmul(block, dtype, mode, trans_a, trans_b):
    _skip_on_cuda_compatability()
    Z = 3
    H = 2
    M = 128
    N = 256
    K = 192
    rho = 0.5
    x, w, dy, shape, layout = init_matmul_inputs(Z, H, M, N, K, rho, mode, trans_a, trans_b, block, dtype, layout=None)
    ref_y, ref_dx, ref_dw = run_matmul_reference(x.clone(), w.clone(), mode, trans_a, trans_b, layout, block, dy)
    st_y, st_dx, st_dw = run_matmul_sparse(x.clone(), w.clone(), mode, trans_a, trans_b, layout, block, dy)
    assert allclose(ref_y, st_y)
    assert allclose(ref_dx, st_dx)
    assert allclose(ref_dw, st_dw)