"test/torchscript_bc_test/main.py" did not exist on "4a8610fd65945d6205d0930f173a36004ab17671"
test_cuda_backward.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import pytest
import json
import random
import time
import copy
from torch import nn
from modelingpreln import BertEncoder as BertEncoderPreln
from modeling import BertEncoder as BertEncoderPostln
from modeling import BertConfig, BertLayerNorm
from deepspeed import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig
15
import deepspeed
16
17
18

import sys

19
20
#if not deepspeed.ops.__installed_ops__['transformer']:
#    pytest.skip("transformer kernels are not installed", allow_module_level=True)
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

def check_equal(first, second, atol=1e-2, verbose=False):
    diction_x = {}
    diction_y = {}

    for i, (x, y) in enumerate(zip(first, second)):
        print(x[1], y[1])

    for i, (x, y) in enumerate(zip(first, second)):
        k = 0
        while (diction_x.get((k, x[1])) is not None):
            k = k + 1
        diction_x[k, x[1]] = x[0]
        k = 0
        while (diction_y.get((k, y[1])) is not None):
            k = k + 1
        diction_y[k, y[1]] = y[0]
    if verbose:
        print()
    for i, (x, y) in enumerate(zip(diction_x, diction_y)):
        print(x, y)

    for i, (x, y) in enumerate(zip(diction_x, diction_y)):
        if (x[0] == 1): continue
        print("checking ", x[1], ":")
        y = diction_y[x[0], x[1]]
        x = diction_x[x[0], x[1]]
        x = x.cpu().detach().numpy()
        y = y.cpu().detach().numpy()
        print(x)
        print(y)

        avgx = np.sum(abs(x), dtype=float)
        countx = x.shape[0]
        for i in range(len(x.shape) - 1):
            countx *= x.shape[i + 1]
            avgx = np.sum(avgx)
        tollerance = 1
        if avgx != float('inf') and avgx != -float('inf'):
            avgx = avgx / countx
            tollerance = avgx * atol
        print("tollerance is ", tollerance)
        if verbose:
            print("x = {}".format(x.flatten()))
            print("y = {}".format(y.flatten()))
            print('-' * 80)
        np.testing.assert_allclose(x, y, err_msg="Index: {}".format(i), atol=tollerance)


def zero_grad(variables):
    for variable in variables:
        variable.grad.zero_()


device = torch.device("cuda")
kwargs_fp32 = {'dtype': torch.float, 'device': device, 'requires_grad': True}
kwargs_fp16 = {'dtype': torch.half, 'device': device, 'requires_grad': True}


class DSEncoder(nn.Module):
    def __init__(self, config, weights, biases):
        super(DSEncoder, self).__init__()
        self.FinalLayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
        self.layer = nn.ModuleList([
86
            copy.deepcopy(DeepSpeedTransformerLayer(config,
87
88
                                                    weights,
                                                    biases))
89
            for _ in range(config.num_hidden_layers)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        ])
        self.grads = []
        self.pre_or_post = config.pre_layer_norm

    def forward(self,
                hidden_states,
                attention_mask,
                output_all_encoded_layers=True,
                checkpoint_activations=False):
        all_encoder_layers = []

        def custom(start, end):
            def custom_forward(*inputs):
                layers = self.layer[start:end]
                x_ = inputs[0]
                for layer in layers:
                    x_ = layer(x_, inputs[1])
                return x_

            return custom_forward

        if checkpoint_activations:
            l = 0
            num_layers = len(self.layer)
            chunk_length = math.ceil(math.sqrt(num_layers))
            while l < num_layers:
                hidden_states = checkpoint.checkpoint(custom(l,
                                                             l + chunk_length),
                                                      hidden_states,
                                                      attention_mask * 1)
                l += chunk_length
            # decoder layers
        else:
            for i, layer_module in enumerate(self.layer):
124
125
126
                hidden_states = layer_module(hidden_states,
                                             attention_mask,
                                             grads=self.grads)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
                hidden_states.register_hook(
                    lambda x,
                    self=self: self.grads.append([x,
                                                  "hidden_state"]))

                if output_all_encoded_layers:
                    all_encoder_layers.append(hidden_states)

        if not output_all_encoded_layers or checkpoint_activations:
            if (self.pre_or_post):
                hidden_states = self.FinalLayerNorm(hidden_states)
            all_encoder_layers.append(hidden_states)
        return all_encoder_layers

    def get_grads(self):
        return self.grads


def create_models(ds_config):
    bert_config = BertConfig(vocab_size_or_config_json_file=119547,
                             hidden_size=ds_config.hidden_size,
                             num_hidden_layers=ds_config.num_hidden_layers,
                             num_attention_heads=ds_config.heads,
150
                             intermediate_size=ds_config.intermediate_size,
151
152
153
                             hidden_act="gelu",
                             hidden_dropout_prob=ds_config.hidden_dropout_ratio,
                             attention_probs_dropout_prob=ds_config.attn_dropout_ratio,
154
                             max_position_embeddings=512,
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
                             type_vocab_size=2,
                             initializer_range=ds_config.initializer_range)

    weights = []
    biases = []

    for i in range(4):
        weights.append(
            nn.Parameter(torch.Tensor(ds_config.hidden_size,
                                      ds_config.hidden_size)))
        weights[i].data.normal_(mean=0.0, std=ds_config.initializer_range)

    weights.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    weights[4].data.fill_(1.0)
    weights.append(
170
        nn.Parameter(torch.Tensor(ds_config.intermediate_size,
171
172
173
174
                                  ds_config.hidden_size)))
    weights[5].data.normal_(mean=0.0, std=ds_config.initializer_range)
    weights.append(
        nn.Parameter(torch.Tensor(ds_config.hidden_size,
175
                                  ds_config.intermediate_size)))
176
177
178
179
180
181
182
183
184
    weights[6].data.normal_(mean=0.0, std=ds_config.initializer_range)
    weights.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    weights[7].data.fill_(1.0)

    biases.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    biases[0].data.zero_()
    for i in range(4):
        biases.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
        biases[i + 1].data.zero_()
185
    biases.append(nn.Parameter(torch.Tensor(ds_config.intermediate_size)))
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    biases[5].data.zero_()
    biases.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    biases[6].data.zero_()
    biases.append(nn.Parameter(torch.Tensor(ds_config.hidden_size)))
    biases[7].data.zero_()

    if (ds_config.pre_layer_norm):
        bert_encoder = BertEncoderPreln(bert_config, weights, biases)
    else:
        bert_encoder = BertEncoderPostln(bert_config, weights, biases)
    ds_encoder = DSEncoder(ds_config, weights, biases)

    if ds_config.fp16:
        bert_encoder.half()
        ds_encoder.half()

    bert_encoder.cuda()
    ds_encoder.cuda()

    return bert_encoder, ds_encoder


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)


214
def run_backward(ds_config, seq_len, atol=1e-2, verbose=False):
215
216
217
218
219
220
    set_seed(123)
    bert_encoder, ds_encoder = create_models(ds_config)

    # prepare test data
    kwargs = kwargs_fp16 if ds_config.fp16 else kwargs_fp32
    hidden_states = torch.randn(ds_config.batch_size,
221
                                seq_len,
222
223
                                ds_config.hidden_size,
                                **kwargs)
224
225
    input_mask = torch.randn(ds_config.batch_size, 1, 1, seq_len, **kwargs)
    Y = torch.randn(ds_config.batch_size, seq_len, ds_config.hidden_size, **kwargs)
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

    # run baseline
    base_results = bert_encoder(hidden_states,
                                input_mask,
                                output_all_encoded_layers=False,
                                checkpoint_activations=False)

    loss = (Y - base_results[0]).pow(2).sum()
    loss.backward()
    base_grads = bert_encoder.get_grads()

    # run ds
    ds_results = ds_encoder(hidden_states,
                            input_mask,
                            output_all_encoded_layers=False,
                            checkpoint_activations=False)

    loss = (Y - ds_results[0]).pow(2).sum()
    loss.backward()
    ds_grads = ds_encoder.get_grads()

    # check grads
    check_equal(base_grads, ds_grads, atol=atol, verbose=verbose)


251
#test_backward[3-1024-120-16-24-True-True-0.05]
252
253
@pytest.mark.parametrize('batch_size, hidden_size, seq_len, heads, num_layers, is_preln, use_fp16, atol',
                         [
254
255
256
257
258
259
                             (3,1024,119,16,24,True,False, 0.05),
                             (3,1024,115,16,24,True,True, 0.05),
                             (1024,128,10,2,2,False,False, 0.1),
                             (3,1024,52,16,24,False,True, 0.2),
                             (3,128,51,2,24,False,False, 0.1),
                             (3,128,54,2,24,False,True, 0.2),
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
                         ]) # yapf: disable
def test_backward(batch_size,
                  hidden_size,
                  seq_len,
                  heads,
                  num_layers,
                  is_preln,
                  use_fp16,
                  atol):
    # Only run fp16 test cases on devices with 7+ capability.
    major, _ = torch.cuda.get_device_capability()
    if major < 7 and (use_fp16 is True or is_preln is False):
        return

    ds_config = DeepSpeedTransformerConfig()
    ds_config.layer_id = None
    ds_config.batch_size = batch_size
    ds_config.hidden_size = hidden_size
278
    ds_config.intermediate_size = hidden_size
279
280
281
282
283
284
285
286
    ds_config.heads = heads
    ds_config.attn_dropout_ratio = 0.0
    ds_config.hidden_dropout_ratio = 0.0
    ds_config.num_hidden_layers = num_layers
    ds_config.pre_layer_norm = is_preln
    ds_config.initializer_range = 0.02
    ds_config.fp16 = use_fp16

287
    run_backward(ds_config, seq_len, atol=atol)
288
289


Jeff Rasley's avatar
Jeff Rasley committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#@pytest.mark.parametrize('batch_size, hidden_size, seq_len, heads, num_layers, is_preln, use_fp16, atol',
#                         [
#                             (3,1024,128,16,24,True,False, 0.07),
#                             (3,1024,128,16,24,True,True, 0.05),
#                             (3,1024,128,16,24,False,False, 0.1),
#                             (3,1024,128,16,24,False,True, 0.2),
#                         ]) # yapf: disable
#def test_backward_stochastic(batch_size,
#                             hidden_size,
#                             seq_len,
#                             heads,
#                             num_layers,
#                             is_preln,
#                             use_fp16,
#                             atol):
#    # Only run fp16 test cases on devices with 7+ capability.
#    major, _ = torch.cuda.get_device_capability()
#    if major < 7 and (use_fp16 is True or is_preln is False):
#        return
#
#    ds_config = DeepSpeedTransformerConfig()
#    ds_config.layer_id = None
#    ds_config.batch_size = batch_size
#    ds_config.hidden_size = hidden_size
314
#    ds_config.intermediate_size = 4 * hidden_size
Jeff Rasley's avatar
Jeff Rasley committed
315
316
317
318
319
320
321
322
323
324
325
#    ds_config.max_seq_length = seq_len
#    ds_config.heads = heads
#    ds_config.attn_dropout_ratio = 0.0
#    ds_config.hidden_dropout_ratio = 0.0
#    ds_config.num_hidden_layers = num_layers
#    ds_config.pre_layer_norm = is_preln
#    ds_config.initializer_range = 0.02
#    ds_config.fp16 = use_fp16
#    ds_config.stochastic_mode = True
#
#    run_backward(ds_config, atol=atol)