test_dynamic_loss_scale.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import deepspeed
import argparse
import pytest
import json
import os
import numpy as np
from common import distributed_test
from simple_model import SimpleModel, args_from_dict


def run_model_step(model, gradient_list):
    for value in gradient_list:
        for p in model.parameters():
            p.grad = torch.empty_like(p, dtype=p.dtype)
            p.grad.fill_(value)
        model.step()


def test_fused_no_overflow(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 0,
            "initial_scale_power": 8,
            "loss_scale_window": 2
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=1)
    def _test_fused_no_overflow(args):
        hidden_dim = 1
42
        model = SimpleModel(hidden_dim)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        model, optim, _, _ = deepspeed.initialize(args=args,
                                                  model=model,
                                                  model_parameters=model.parameters())

        expected_loss_scale = 2**8
        expected_scale_window = 2
        # Ensure the dynamic loss scaler is correctly configured.
        assert optim.dynamic_loss_scale == True
        assert optim.cur_scale == expected_loss_scale
        assert optim.scale_window == expected_scale_window

        for i, value in enumerate(np.random.uniform(-0.1, 0.1, 10)):
            run_model_step(model, [value])
            assert optim.cur_scale == expected_loss_scale
            assert optim.cur_iter == (i + 1)
            if optim.cur_iter % expected_scale_window == 0:
                expected_loss_scale *= 2

    _test_fused_no_overflow(args)


def test_fused_all_overflow(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 0,
            "initial_scale_power": 4,
            "loss_scale_window": 2
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=1)
    def _test_fused_all_overflow(args):
        hidden_dim = 1
86
        model = SimpleModel(hidden_dim)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        model, optim, _, _ = deepspeed.initialize(args=args,
                                                  model=model,
                                                  model_parameters=model.parameters())

        expected_loss_scale = 2**4
        # Ensure the dynamic loss scaler is correctly configured.
        assert optim.dynamic_loss_scale == True
        assert optim.cur_scale == expected_loss_scale

        overflow_gradients = [float('inf'), float('-inf')] + [float('nan')] * 6
        for i, value in enumerate(overflow_gradients):
            run_model_step(model, [value])
            expected_loss_scale = max(expected_loss_scale / 2, 1)
            assert optim.cur_scale == expected_loss_scale
            assert optim.cur_iter == (i + 1)

    _test_fused_all_overflow(args)


def test_fused_some_overflow(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 0,
            "initial_scale_power": 8,
            "loss_scale_window": 2
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=1)
    def _test_fused_some_overflow(args):
        hidden_dim = 1
128
        model = SimpleModel(hidden_dim)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        model, optim, _, _ = deepspeed.initialize(args=args,
                                                  model=model,
                                                  model_parameters=model.parameters())

        expected_loss_scale = 2**8
        expected_scale_window = 2
        expected_iteration = 0
        # Ensure the dynamic loss scaler is correctly configured.
        assert optim.dynamic_loss_scale == True
        assert optim.cur_scale == expected_loss_scale
        assert optim.scale_window == expected_scale_window

        # Run model with overflows to decrease scale
        overflow_gradients = [float('inf'), float('nan')]
        expected_iteration += len(overflow_gradients)
        run_model_step(model, overflow_gradients)
        expected_loss_scale /= (2**len(overflow_gradients))
        assert optim.cur_scale == expected_loss_scale
        assert optim.cur_iter == expected_iteration

        # Run model scale_window + 1 times to increase scale once
        normal_gradients = np.random.uniform(-0.1, 0.1, expected_scale_window + 1)
        expected_iteration += len(normal_gradients)
        run_model_step(model, normal_gradients)
        expected_loss_scale *= 2
        assert optim.cur_scale == expected_loss_scale
        assert optim.cur_iter == expected_iteration

        # Run model with overflows to decrease scale
        overflow_gradients = [float('inf')]
        expected_iteration += len(overflow_gradients)
        run_model_step(model, overflow_gradients)
        expected_loss_scale /= (2**len(overflow_gradients))
        assert optim.cur_scale == expected_loss_scale
        assert optim.cur_iter == expected_iteration

    _test_fused_some_overflow(args)


def test_unfused_no_overflow(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 0,
            "initial_scale_power": 8,
            "loss_scale_window": 2
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=1)
    def _test_unfused_no_overflow(args):
        hidden_dim = 1
190
        model = SimpleModel(hidden_dim)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        model, optim, _, _ = deepspeed.initialize(args=args,
                                                  model=model,
                                                  model_parameters=model.parameters())
        expected_loss_scale = 2**8
        expected_scale_window = 2
        # Ensure the dynamic loss scaler is correctly configured.
        assert optim.dynamic_loss_scale == True
        assert optim.cur_scale == expected_loss_scale
        assert optim.scale_window == expected_scale_window

        for i, value in enumerate(np.random.uniform(-0.1, 0.1, 10)):
            run_model_step(model, [value])
            assert optim.cur_scale == expected_loss_scale
            assert optim.cur_iter == (i + 1)
            if optim.cur_iter % expected_scale_window == 0:
                expected_loss_scale *= 2

    _test_unfused_no_overflow(args)


def test_unfused_all_overflow(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 0,
            "initial_scale_power": 4,
            "loss_scale_window": 2,
            "min_loss_scale": 0.25
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=1)
    def _test_unfused_all_overflow(args):
        hidden_dim = 1
234
        model = SimpleModel(hidden_dim)
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        model, optim, _, _ = deepspeed.initialize(args=args,
                                                  model=model,
                                                  model_parameters=model.parameters())

        expected_loss_scale = 2**4
        expected_min_loss_scale = 0.25
        # Ensure the dynamic loss scaler is correctly configured.
        assert optim.dynamic_loss_scale == True
        assert optim.cur_scale == expected_loss_scale
        assert optim.min_loss_scale == expected_min_loss_scale

        overflow_gradients = [float('inf'), float('-inf')] + [float('nan')] * 6
        for i, value in enumerate(overflow_gradients):
            run_model_step(model, [value])
            expected_loss_scale = max(expected_loss_scale / 2, expected_min_loss_scale)
            assert optim.cur_scale == expected_loss_scale
            assert optim.cur_iter == (i + 1)

    _test_unfused_all_overflow(args)


def test_unfused_some_overflow(tmpdir):
    config_dict = {
        "train_batch_size": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
                "lr": 0.00015
            }
        },
        "fp16": {
            "enabled": True,
            "loss_scale": 0,
            "initial_scale_power": 8,
            "loss_scale_window": 2
        }
    }
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=1)
    def _test_unfused_some_overflow(args):
        hidden_dim = 1
278
        model = SimpleModel(hidden_dim)
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        model, optim, _, _ = deepspeed.initialize(args=args,
                                                  model=model,
                                                  model_parameters=model.parameters())

        expected_loss_scale = 2**8
        expected_scale_window = 2
        expected_iteration = 0
        # Ensure the dynamic loss scaler is correctly configured.
        assert optim.dynamic_loss_scale == True
        assert optim.cur_scale == expected_loss_scale
        assert optim.scale_window == expected_scale_window

        # Run model with overflows to decrease scale
        overflow_gradients = [float('inf'), float('nan')]
        expected_iteration += len(overflow_gradients)
        run_model_step(model, overflow_gradients)
        expected_loss_scale /= (2**len(overflow_gradients))
        assert optim.cur_scale == expected_loss_scale
        assert optim.cur_iter == expected_iteration

        # Run model scale_window + 1 times to increase scale once
        normal_gradients = np.random.uniform(-0.1, 0.1, expected_scale_window + 1)
        expected_iteration += len(normal_gradients)
        run_model_step(model, normal_gradients)
        expected_loss_scale *= 2
        assert optim.cur_scale == expected_loss_scale
        assert optim.cur_iter == expected_iteration

        # Run model with overflows to decrease scale
        overflow_gradients = [float('inf')]
        expected_iteration += len(overflow_gradients)
        run_model_step(model, overflow_gradients)
        expected_loss_scale /= (2**len(overflow_gradients))
        assert optim.cur_scale == expected_loss_scale
        assert optim.cur_iter == expected_iteration

    _test_unfused_some_overflow(args)