deepspeed_light.py 43.2 KB
Newer Older
Olatunji Ruwase's avatar
Olatunji Ruwase committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
'''
Copyright 2019 The Microsoft DeepSpeed Team
'''

import logging
import torch
import os
import torch.distributed as dist
from torch.nn.modules import Module

from tensorboardX import SummaryWriter

from deepspeed.pt.deepspeed_timer import ThroughputTimer, SynchronizedWallClockTimer
from deepspeed.pt.deepspeed_zero_optimizer import FP16_DeepSpeedZeroOptimizer

from deepspeed.pt.fp16_optimizer import FP16_Optimizer
from deepspeed.pt.fp16_unfused_optimizer import FP16_UnfusedOptimizer
from deepspeed.pt.deepspeed_fused_lamb import FusedLamb
from deepspeed.pt.deepspeed_config import DeepSpeedConfig, \
    ADAM_OPTIMIZER, LAMB_OPTIMIZER, DEEPSPEED_OPTIMIZERS

from deepspeed.pt.deepspeed_dataloader import DeepSpeedDataLoader
from deepspeed.pt.deepspeed_constants import ROUTE_TRAIN, ROUTE_PREDICT, \
24
    ROUTE_EVAL, TORCH_DISTRIBUTED_DEFAULT_PORT
Olatunji Ruwase's avatar
Olatunji Ruwase committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

import deepspeed.pt.deepspeed_lr_schedules as lr_schedules
from deepspeed.pt.deepspeed_csr_tensor import CSRTensor

MEMORY_OPT_ALLREDUCE_SIZE = 500000000
SUMMARY_WRITER_DIR_NAME = "JobId"

try:
    from apex_C import flatten
    from apex_C import unflatten
except ImportError:
    try:
        _ = warned_flatten
    except NameError:
        print(
            "Warning:  apex was installed without --cpp_ext.  Falling back to Python flatten and unflatten."
        )
        warned_flatten = True
    from torch._utils import _flatten_dense_tensors as flatten
    from torch._utils import _unflatten_dense_tensors as unflatten


def split_half_float_double_csr(tensors):
    dtypes = [
        "torch.cuda.HalfTensor",
        "torch.cuda.FloatTensor",
        "torch.cuda.DoubleTensor",
        CSRTensor.type()
    ]
    buckets = []
    for i, dtype in enumerate(dtypes):
        bucket = [t for t in tensors if t.type() == dtype]
        if bucket:
            buckets.append((dtype, bucket))
    return buckets


def _initialize_parameter_parallel_groups(parameter_parallel_size=None):
    data_parallel_size = int(dist.get_world_size())
    if parameter_parallel_size is None:
        parameter_parallel_size = int(data_parallel_size)
    print(data_parallel_size, parameter_parallel_size)
    assert data_parallel_size % parameter_parallel_size == 0, \
        'world size should be divisible by parameter parallel size'
    rank = dist.get_rank()
    my_group = None
    for i in range(dist.get_world_size() // parameter_parallel_size):
        ranks = range(i * parameter_parallel_size, (i + 1) * parameter_parallel_size)
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            my_group = group
    return my_group


def print_configuration(args, name):
    print('{}:'.format(name), flush=True)
    for arg in sorted(vars(args)):
        dots = '.' * (29 - len(arg))
        print('  {} {} {}'.format(arg, dots, getattr(args, arg)), flush=True)


class DeepSpeedLight(Module):
    r"""DeepSpeed engine for training.
    """
    def __init__(self,
                 args,
                 model,
                 optimizer=None,
                 model_parameters=None,
                 training_data=None,
                 lr_scheduler=None,
                 mpu=None,
97
                 dist_init_required=None,
Olatunji Ruwase's avatar
Olatunji Ruwase committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
                 collate_fn=None):
        super(DeepSpeedLight, self).__init__()

        logging.basicConfig(level=logging.INFO,
                            format="[%(levelname)s %(asctime)s] %(message)s",
                            datefmt="%Y-%m-%d %H:%M:%S")

        self.client_optimizer = optimizer
        self.client_model_parameters = model_parameters
        self.client_lr_scheduler = lr_scheduler
        self.training_data = training_data
        self.collate_fn = collate_fn
        self.mpu = mpu
        self.data_parallel_group = None
        self.global_steps = 0
        self.micro_steps = 0
        self.skipped_steps = 0
        self.gradient_predivide_factor = 1.0
        self.gradient_average = True
        self.warn_unscaled_loss = True

119
120
121
        if dist_init_required is None:
            dist_init_required = not dist.is_initialized()

122
123
        self._mpi_check(args, dist_init_required)

124
        self.dist_backend = "nccl"
Olatunji Ruwase's avatar
Olatunji Ruwase committed
125
        if dist_init_required:
126
127
128
129
130
131
132
133
            if not dist.is_initialized():
                logging.info("Initializing torch distributed with backend: {}".format(
                    self.dist_backend))
                dist.init_process_group(backend=self.dist_backend)
            else:
                logging.warning(
                    "Was given dist_init_required=True but detected that torch"
                    "distributed was already initialized, cannot initialize twice.")
Olatunji Ruwase's avatar
Olatunji Ruwase committed
134
135
136
137
138
139
140
141
142
143
144

        self._do_args_sanity_check(args)
        self._configure_with_arguments(args, mpu)
        self._do_sanity_check()

        self.sample_count = 0
        if self.tensorboard_enabled():
            self.summary_writer = self.get_summary_writer()

        self._init_distributed(dist_init_required)

145
146
147
        # Configure distributed model
        self._configure_distributed_model(model)

Olatunji Ruwase's avatar
Olatunji Ruwase committed
148
149
150
        # Throughput timer
        self.tput_timer = ThroughputTimer(
            batch_size=self.train_micro_batch_size_per_gpu(),
151
            num_workers=self.dp_world_size,
Olatunji Ruwase's avatar
Olatunji Ruwase committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            monitor_memory=False)

        self.training_dataloader = self.deepspeed_io(
            training_data) if training_data else None

        # Configure optimizer and scheduler
        self.optimizer = None
        self.lr_scheduler = None
        if model_parameters or optimizer:
            self._configure_optimizer(optimizer, model_parameters)
            self._configure_lr_scheduler(lr_scheduler)
            self._report_progress(0)

        # Configure wall clock timer
        self.timers = SynchronizedWallClockTimer()

        # Bookkeeping for csr support
        self.csr_tensor_module_names = set()
        if self.sparse_gradients_enabled():
            for name, module in self.module.named_modules():
                if isinstance(module, torch.nn.Embedding):
                    self.csr_tensor_module_names.add(name)
                    logging.info("Will convert {} to sparse (csr) "
                                 "tensor during training".format(name))

        self.save_non_zero_checkpoint = False
        self.save_zero_checkpoint = False
        self._configure_checkpointing(dist_init_required)

        if self.global_rank == 0:
            self._config.print('DeepSpeedLight configuration')
            if self.dump_state():
                print_configuration(self, 'DeepSpeedLight')

186
    def _mpi_check(self, args, dist_init_required):
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        if hasattr(args, 'deepspeed_mpi') and args.deepspeed_mpi:
            from mpi4py import MPI
            import subprocess
            comm = MPI.COMM_WORLD
            rank = comm.Get_rank()
            world_size = comm.Get_size()

            master_addr = None
            if rank == 0:
                hostname_cmd = ["hostname -I"]
                result = subprocess.check_output(hostname_cmd, shell=True)
                master_addr = result.decode('utf-8').split()[0]
            master_addr = comm.bcast(master_addr, root=0)

            # Determine local rank by assuming hostnames are unique
            proc_name = MPI.Get_processor_name()
            all_procs = comm.allgather(proc_name)
            local_rank = sum([i == proc_name for i in all_procs[:rank]])

            os.environ['RANK'] = str(rank)
            os.environ['WORLD_SIZE'] = str(world_size)
            args.local_rank = local_rank
            os.environ['MASTER_ADDR'] = master_addr
            os.environ['MASTER_PORT'] = TORCH_DISTRIBUTED_DEFAULT_PORT

            logging.info(
                "Discovered MPI settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}"
                .format(os.environ['RANK'],
                        args.local_rank,
                        os.environ['WORLD_SIZE'],
                        os.environ['MASTER_ADDR'],
                        os.environ['MASTER_PORT']))

220
221
222
223
            if not dist_init_required and dist.is_initialized():
                assert dist.get_rank() == rank, "MPI rank {} does not match torch rank {}".format(rank, dist.get_rank())
                assert dist.get_world_size() == world_size, "MPI world size {} does not match torch world size {}".format(world_size, dist.get_world_size())

Olatunji Ruwase's avatar
Olatunji Ruwase committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    def tensorboard_enabled(self):
        return self._config.tensorboard_enabled

    def tensorboard_output_path(self):
        return self._config.tensorboard_output_path

    def tensorboard_job_name(self):
        return self._config.tensorboard_job_name

    def get_summary_writer(self,
                           name="DeepSpeedJobName",
                           base=os.environ["HOME"] + "/tensorboard"):
        if self.tensorboard_job_name():
            name = self.tensorboard_job_name()
        if self.tensorboard_output_path():
            return SummaryWriter(log_dir=self.tensorboard_output_path())
        if 'DLWS_JOB_ID' in os.environ:
            SUMMARY_WRITER_DIR_NAME = os.environ['DLWS_JOB_ID'] + "/logs"
        return SummaryWriter(log_dir=os.path.join(base, SUMMARY_WRITER_DIR_NAME, name))

    def wall_clock_breakdown(self):
        return self._config.wall_clock_breakdown

    def sparse_gradients_enabled(self):
        return self._config.sparse_gradients_enabled

    def train_batch_size(self):
        return self._config.train_batch_size

    def train_micro_batch_size_per_gpu(self):
        return self._config.train_micro_batch_size_per_gpu

    def optimizer_name(self):
        return self._config.optimizer_name

    def optimizer_params(self):
        return self._config.optimizer_params

262
263
264
    def optimizer_legacy_fusion(self):
        return self._config.optimizer_legacy_fusion

Olatunji Ruwase's avatar
Olatunji Ruwase committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    def scheduler_name(self):
        return self._config.scheduler_name

    def scheduler_params(self):
        return self._config.scheduler_params

    def zero_optimization(self):
        return self._config.zero_enabled

    def allgather_size(self):
        return self._config.allgather_size

    def fp16_enabled(self):
        return self._config.fp16_enabled

    def loss_scale(self):
        return self._config.loss_scale

    def gradient_accumulation_steps(self):
        return self._config.gradient_accumulation_steps

    def allreduce_always_fp32(self):
        return self._config.allreduce_always_fp32

    def postscale_gradients(self):
        return not self._config.prescale_gradients

    def steps_per_print(self):
        return self._config.steps_per_print

    def disable_allgather(self):
        return self._config.disable_allgather

    def dump_state(self):
        return self._config.dump_state

    def gradient_clipping(self):
        return self._config.gradient_clipping

    def dynamic_loss_scale(self):
        return self._config.loss_scale == 0

    def initial_dynamic_scale(self):
        return self._config.initial_dynamic_scale

    def dynamic_loss_scale_args(self):
        return self._config.dynamic_loss_scale_args

    def _configure_lr_scheduler(self, client_lr_scheduler):
        # First check for scheduler in json configuration
        lr_scheduler = self._scheduler_from_config(self.optimizer)
        if lr_scheduler:
            logging.info(
                f'DeepSpeed using configured LR scheduler = {self.scheduler_name()}')
            self.lr_scheduler = lr_scheduler
        else:
            logging.warning('DeepSpeed using client LR scheduler')
            self.lr_scheduler = client_lr_scheduler
        logging.info(f'DeepSpeed LR Scheduler = {self.lr_scheduler}')

    def _configure_checkpointing(self, dist_init_required):

327
328
329
        dp_rank = self.global_rank
        if self.mpu:
            dp_rank = self.mpu.get_data_parallel_rank()
Olatunji Ruwase's avatar
Olatunji Ruwase committed
330
331

        #only the first data parallel process needs to store the model checkpoint
332
        self.save_non_zero_checkpoint = (dp_rank == 0)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
333
334
335
336

        if self.zero_optimization():
            pp_rank = torch.distributed.get_rank(group=self.optimizer.dp_process_group)

337
338
339
            # Only the first parameter parallel process needs to store the
            # optimizer state checkpoints for zero
            self.save_zero_checkpoint = (pp_rank == dp_rank)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

    def _scheduler_from_config(self, optimizer):
        scheduler_name = self.scheduler_name()
        if scheduler_name is not None:
            if hasattr(lr_schedules, scheduler_name):
                scheduler = getattr(lr_schedules, scheduler_name)
            else:
                assert hasattr(torch.optim.lr_scheduler, scheduler_name), \
                    f"DeepSpeed does not recognize LR scheduler {scheduler_name}"

                scheduler = getattr(torch.optim.lr_scheduler, scheduler_name)

            scheduler_params = self.scheduler_params()
            instantiated_scheduler = scheduler(optimizer, **scheduler_params)
            return instantiated_scheduler
        else:
            return None

    def _init_distributed(self, dist_init_required):
        if self.local_rank >= 0:
            torch.cuda.set_device(self.local_rank)
            self.device = torch.device("cuda", self.local_rank)
            self.world_size = dist.get_world_size()
            self.global_rank = dist.get_rank()
            logging.info("Set device to local rank {} within node.".format(
                self.local_rank))
        else:
            self.world_size = 1
            self.global_rank = 0
            self.device = torch.device("cuda")

    # Configure based on command line arguments
    def _configure_with_arguments(self, args, mpu):
        self.local_rank = args.local_rank if hasattr(args, 'local_rank') else 0
        self._config = DeepSpeedConfig(args.deepspeed_config, mpu)

    # Validate command line arguments
    def _do_args_sanity_check(self, args):
378
379
380
381
382
383
384
385
        if hasattr(args, 'deepscale_config') and args.deepscale_config is not None:
            logging.warning(
                "************ --deepscale_config is deprecated, please use --deepspeed_config ************"
            )
            if hasattr(args, 'deepspeed_config'):
                assert args.deepspeed_config is None, "Not sure how to proceed, we were given both a deepscale_config and deepspeed_config"
            args.deepspeed_config = args.deepscale_config

Olatunji Ruwase's avatar
Olatunji Ruwase committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        assert hasattr(args, 'local_rank') and type(args.local_rank) == int, \
            'DeepSpeed requires integer command line parameter --local_rank'

        assert hasattr(args, 'deepspeed_config') and args.deepspeed_config is not None, \
            'DeepSpeed requires --deepspeed_config to specify configuration file'

        assert os.path.isfile(args.deepspeed_config), \
            'DeepSpeed configuration file: {} is not an existing file'.format(args.deepspeed_config)

    def _is_supported_optimizer(self, optimizer_name):
        return optimizer_name in DEEPSPEED_OPTIMIZERS or \
            getattr(torch.optim, optimizer_name, None) is not None

    # Validate configuration based on command line arguments
    def _do_sanity_check(self):
        if not self.client_optimizer:
            assert self._is_supported_optimizer(self.optimizer_name()), \
                '{} is not a supported DeepSpeed Optimizer'.format(self.optimizer_name())
            assert self.client_model_parameters, \
                'DeepSpeed {} optimizer requires parameters in initialize() call'.format(self.optimizer_name())

        if self.optimizer_name() == LAMB_OPTIMIZER:
            assert self.dynamic_loss_scale(), \
                'DeepSpeed {} optimizer requires dynamic loss scaling'.format(self.optimizer_name())

    def _configure_distributed_model(self, model):
        self.module = model
        if self.fp16_enabled():
            self.module.half()
        self.module.to(self.device)
        if self.mpu is None:
            self.data_parallel_group = _initialize_parameter_parallel_groups()
            self.dp_world_size = dist.get_world_size()
            src_rank = 0
        else:
            self.data_parallel_group = self.mpu.get_data_parallel_group()
            self.dp_world_size = self.mpu.get_data_parallel_world_size()
            src_rank = self.mpu.get_model_parallel_rank()
        for p in self.module.parameters():
            if torch.is_tensor(p):
                dist.broadcast(p, src_rank, group=self.data_parallel_group)

        # TODO: support new AMP optimizer
        # self.module.half()
        # self.module.to(self.local_rank)
        #self.module, self.optimizer = amp.initialize(self.module, self.optimizer, opt_level="O2")

    # Configure optimizer
    def _configure_optimizer(self, client_optimizer, model_parameters):
        if client_optimizer is not None:
            basic_optimizer = client_optimizer
            logging.info('Using client Optimizer as basic optimizer')
        else:
            basic_optimizer = self._configure_basic_optimizer(model_parameters)
            logging.info(
                'Using DeepSpeed Optimizer param name {} as basic optimizer'.format(
                    self.optimizer_name()))

        logging.info('DeepSpeed Basic Optimizer = {}'.format(basic_optimizer))

446
447
448
449
450
        if self.zero_optimization():
            if self.optimizer_name != ADAM_OPTIMIZER:
                logging.warning(
                    "**** You are using ZeRO with an untested optimizer, proceed with caution *****"
                )
Olatunji Ruwase's avatar
Olatunji Ruwase committed
451
452
453
454
455
456
457
458
459
460
461
462
463
            self.optimizer = self._configure_zero_optimizer(basic_optimizer)
        elif self.fp16_enabled():
            self.optimizer = self._configure_fp16_optimizer(basic_optimizer)
        else:
            self.optimizer = basic_optimizer

        # logging.info('DeepSpeed Final Optimizer = {}'.format(self.optimizer.state_dict()))

    def _configure_basic_optimizer(self, model_parameters):
        optimizer_parameters = self.optimizer_params()
        if self.fp16_enabled() and 'max_grad_norm' in optimizer_parameters.keys():
            optimizer_parameters['max_grad_norm'] = 0.0
        if self.optimizer_name() == ADAM_OPTIMIZER:
464
            from apex.optimizers.fused_adam import FusedAdam
Olatunji Ruwase's avatar
Olatunji Ruwase committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
            optimizer = FusedAdam(model_parameters, **optimizer_parameters)
        elif self.optimizer_name() == LAMB_OPTIMIZER:
            optimizer = FusedLamb(model_parameters, **optimizer_parameters)
        else:
            torch_optimizer = getattr(torch.optim, self.optimizer_name())
            optimizer = torch_optimizer(model_parameters, **optimizer_parameters)
        return optimizer

    def _configure_fp16_optimizer(self, optimizer):
        initial_dynamic_scale = self.initial_dynamic_scale()
        dynamic_loss_args = self.dynamic_loss_scale_args()
        clip_grad = self.gradient_clipping()
        if self.optimizer_name() == ADAM_OPTIMIZER:
            if self.dynamic_loss_scale():
                logging.info('Creating fp16 optimizer with dynamic loss scale')
480
481
482
483
484
485
486
487
                optimizer = FP16_Optimizer(
                    optimizer,
                    dynamic_loss_scale=True,
                    initial_dynamic_scale=initial_dynamic_scale,
                    dynamic_loss_args=dynamic_loss_args,
                    mpu=self.mpu,
                    clip_grad=clip_grad,
                    fused_adam_legacy=self.optimizer_legacy_fusion())
Olatunji Ruwase's avatar
Olatunji Ruwase committed
488
489
490
            else:
                logging.info('Creating fp16 optimizer with static loss scale: {}'.format(
                    self.loss_scale()))
491
492
493
494
495
496
                optimizer = FP16_Optimizer(
                    optimizer,
                    static_loss_scale=self.loss_scale(),
                    mpu=self.mpu,
                    clip_grad=clip_grad,
                    fused_adam_legacy=self.optimizer_legacy_fusion())
Olatunji Ruwase's avatar
Olatunji Ruwase committed
497
498
499
500
501
502
503
504
        else:
            logging.info('Creating fp16 unfused optimizer with dynamic loss scale')
            optimizer = FP16_UnfusedOptimizer(
                optimizer,
                dynamic_loss_scale=self.dynamic_loss_scale(),
                dynamic_loss_args=dynamic_loss_args,
                mpu=self.mpu,
                clip_grad=clip_grad,
505
                fused_lamb_legacy=self.optimizer_legacy_fusion()
Olatunji Ruwase's avatar
Olatunji Ruwase committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
                if self.optimizer_name() == LAMB_OPTIMIZER else False)

        return optimizer

    def _configure_zero_optimizer(self, optimizer):
        logging.info('Creating fp16 zero optimizer')
        optimizer = FP16_DeepSpeedZeroOptimizer(
            optimizer,
            static_loss_scale=self.loss_scale(),
            dynamic_loss_scale=self.dynamic_loss_scale(),
            dynamic_loss_args=self.dynamic_loss_scale_args(),
            dp_process_group=self.data_parallel_group,
            clip_grad=self.gradient_clipping(),
            all_gather_partitions=not self.disable_allgather(),
            allgather_size=self.allgather_size(),
            mpu=self.mpu)

        return optimizer

    def deepspeed_io(self,
                     dataset,
                     batch_size=None,
                     route=ROUTE_TRAIN,
                     pin_memory=True,
                     data_sampler=None,
                     collate_fn=None,
                     num_local_io_workers=None):
        if not isinstance(dataset, torch.utils.data.Dataset):
            raise ValueError("Training data must be a torch Dataset")

        if data_sampler is None and (route == ROUTE_PREDICT or route == ROUTE_EVAL):
            data_sampler = torch.utils.data.SequentialSampler(dataset)

        if batch_size is None:
            batch_size = self.train_micro_batch_size_per_gpu()

        if collate_fn is None:
            collate_fn = self.collate_fn

        # Currently we only use timer in train route
        deepspeed_io_timer = None
        if route == ROUTE_TRAIN:
            deepspeed_io_timer = self.tput_timer

        return DeepSpeedDataLoader(dataset=dataset,
                                   batch_size=batch_size,
                                   pin_memory=pin_memory,
                                   collate_fn=collate_fn,
                                   local_rank=self.local_rank,
                                   tput_timer=deepspeed_io_timer,
                                   num_local_io_workers=num_local_io_workers,
                                   data_sampler=data_sampler)

    def train(self):
        r"""
        """

        self.warn_unscaled_loss = True
        self.module.train()

    def eval(self):
        r"""
        """

        self.warn_unscaled_loss = True
        self.module.train(False)

    def _scale_loss(self, loss):
        if isinstance(loss, torch.Tensor):
            loss = loss / self.gradient_accumulation_steps()
        elif isinstance(loss, tuple) and isinstance(loss[0], torch.Tensor):
            loss = (l / self.gradient_accumulation_steps() for l in loss)
        elif isinstance(loss, list) and isinstance(loss[0], torch.Tensor):
            loss = [l / self.gradient_accumulation_steps() for l in loss]
        else:
            if self.warn_unscaled_loss:
                logging.warning(
                    f'DeepSpeed unable to scale loss because of type: {type(loss)}')
                self.warn_unscaled_loss = False

        return loss

    def forward(self, *inputs, **kwargs):
        r"""Execute forward propagation

        Arguments:
            *inputs: Variable length input list
            **kwargs: variable length keyword arguments
        """

        if self.wall_clock_breakdown():
            self.timers('forward_microstep').start()
            self.timers('forward').start()

        if self.training_dataloader is None:
            self.tput_timer.start()
        loss = self.module(*inputs, **kwargs)

        # scale loss w.r.t. gradient accumulation if needed
        if self.gradient_accumulation_steps() > 1:
            loss = self._scale_loss(loss)

        if self.wall_clock_breakdown():
            self.timers('forward').stop()
            self.timers('forward_microstep').stop()

        return loss

    def allreduce_gradients(self, bucket_size=MEMORY_OPT_ALLREDUCE_SIZE):
        if self.is_gradient_accumulation_boundary():
            self.buffered_allreduce_fallback(elements_per_buffer=bucket_size)

    def backward(self, loss, allreduce_gradients=True):
        r"""Execute backward pass on the loss

        Arguments:
            loss: Torch tensor on which to execute backward propagation
            allreduce_gradients: If this is False, then gradient averaging will be skipped. Default is True.
        """

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        # Log training Loss
        if self.tensorboard_enabled():
            if self.is_gradient_accumulation_boundary():
                if self.global_rank == 0:
                    self.sample_count += (self.train_micro_batch_size_per_gpu() *
                                          self.dp_world_size *
                                          self.gradient_accumulation_steps())
                    self.summary_events = [
                        (f'Train/Samples/train_loss',
                         loss.mean().item() * self.gradient_accumulation_steps(),
                         self.sample_count)
                    ]
                    for event in self.summary_events:  # write_summary_events
                        self.summary_writer.add_scalar(event[0], event[1], event[2])
                    self.summary_writer.flush()
Olatunji Ruwase's avatar
Olatunji Ruwase committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

        if self.wall_clock_breakdown():
            self.timers('backward_microstep').start()
            self.timers('backward').start()

        assert self.optimizer is not None, "must provide optimizer during " \
                                           "init in order to use backward"

        if self.wall_clock_breakdown():
            self.timers('backward_inner_microstep').start()
            self.timers('backward_inner').start()

        if self.zero_optimization():
            self.optimizer.backward(loss)
        elif self.fp16_enabled():
            self.optimizer.backward(loss)

            # TODO: Use new AMP semantics as below
            # with amp.scale_loss(loss, self.optimizer) as scaled_loss:
            #    scaled_loss.backward()
        else:
            loss.backward()

        if self.wall_clock_breakdown():
            self.timers('backward_inner').stop()
            self.timers('backward_inner_microstep').stop()

        if self.wall_clock_breakdown():
            self.timers('backward_allreduce_microstep').start()
            self.timers('backward_allreduce').start()

        if allreduce_gradients:
            self.allreduce_gradients()

        if self.wall_clock_breakdown():
            self.timers('backward_allreduce').stop()
            self.timers('backward_allreduce_microstep').stop()
            self.timers('backward').stop()
            self.timers('backward_microstep').stop()

    def is_gradient_accumulation_boundary(self):
        return (self.micro_steps + 1) % \
            self.gradient_accumulation_steps() == 0

    def step(self):
        r"""Execute the weight update step after forward and backward propagation on effective_train_batch
        """
        if self.wall_clock_breakdown():
            self.timers('step_microstep').start()
            self.timers('step').start()

        assert self.optimizer is not None, "must provide optimizer during " \
                                           "init in order to use step"
        report_progress = self.global_rank == 0 if self.global_rank else True

        if self.is_gradient_accumulation_boundary():
            self.optimizer.step()
            self.optimizer.zero_grad()

            # Check overlow here since in DS fp16 optimizer, the overflow is updated in above step() function.
            overflow = False
            if hasattr(self.optimizer, 'overflow'):
                overflow = self.optimizer.overflow

            if overflow:
                self.skipped_steps += 1
            else:
                if self.lr_scheduler is not None:
                    self.lr_scheduler.step()
                if report_progress and (self.global_steps +
                                        1) % self.steps_per_print() == 0:
                    self._report_progress(self.global_steps + 1)

            self.global_steps += 1

        self.tput_timer.stop(report_progress)

718
719
720
721
722
723
724
725
726
727
        # Log learning rate
        if self.tensorboard_enabled():
            if self.is_gradient_accumulation_boundary():
                if self.global_rank == 0:
                    self.summary_events = [(f'Train/Samples/lr',
                                            self.get_lr()[0],
                                            self.sample_count)]
                    for event in self.summary_events:  # write_summary_events
                        self.summary_writer.add_scalar(event[0], event[1], event[2])
                    self.summary_writer.flush()
Olatunji Ruwase's avatar
Olatunji Ruwase committed
728
729
730
731
732
733
734
735
736
737
738

        if self.wall_clock_breakdown():
            self.timers('step').stop()
            self.timers('step_microstep').stop()
            self.timers.log([
                'forward_microstep',
                'backward_microstep',
                'backward_inner_microstep',
                'backward_allreduce_microstep',
                'step_microstep'
            ])
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
            # Log timing
            if self.tensorboard_enabled():
                if self.is_gradient_accumulation_boundary():
                    if self.global_rank == 0:
                        self.summary_events = [(f'Train/Samples/elapsed_time_ms_forward', self.timers('forward').elapsed(reset=False) * 1000.0, self.sample_count), \
                                                (f'Train/Samples/elapsed_time_ms_backward', self.timers('backward').elapsed(reset=False) * 1000.0, self.sample_count), \
                                                (f'Train/Samples/elapsed_time_ms_backward_inner', self.timers('backward_inner').elapsed(reset=False) * 1000.0, self.sample_count), \
                                                (f'Train/Samples/elapsed_time_ms_backward_allreduce', self.timers('backward_allreduce').elapsed(reset=False) * 1000.0, self.sample_count), \
                                                (f'Train/Samples/elapsed_time_ms_step', self.timers('step').elapsed(reset=False) * 1000.0, self.sample_count)
                                                ]
                        for event in self.summary_events:  # write_summary_events
                            self.summary_writer.add_scalar(event[0], event[1], event[2])
                        self.summary_writer.flush()
                    self.timers.log([
                        'forward',
                        'backward',
                        'backward_inner',
                        'backward_allreduce',
                        'step'
                    ])
Olatunji Ruwase's avatar
Olatunji Ruwase committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

        self.micro_steps += 1

    def _get_optimizer_param(self, param_name):
        result = []
        if not self.optimizer:
            return result
        for group in self.optimizer.param_groups:
            if param_name in group:
                result.append(group[param_name])
            else:
                result.append(0.0)
        return result

    def get_lr(self):
        return self._get_optimizer_param('lr')

    def get_mom(self):
        return self._get_optimizer_param('betas')

    def _report_progress(self, step):
        lr = self.get_lr()
        mom = self.get_mom()
        logging.info('rank:{} step={}, skipped={}, lr={}, mom={}'.format(
            self.global_rank,
            step,
            self.skipped_steps,
            lr,
            mom))

    def allreduce_bucket(self, bucket):
        tensor = flatten(bucket)

        tensor_to_allreduce = tensor

        if self.allreduce_always_fp32():
            tensor_to_allreduce = tensor.float()

        if self.postscale_gradients():
            if self.gradient_predivide_factor != 1.0:
                tensor_to_allreduce.mul_(1. / self.gradient_predivide_factor)

            dist.all_reduce(tensor_to_allreduce, group=self.data_parallel_group)

            if self.gradient_average:
                if self.gradient_predivide_factor != self.dp_world_size:
                    tensor_to_allreduce.mul_(self.gradient_predivide_factor /
                                             self.dp_world_size)
        else:
            tensor_to_allreduce.div_(self.dp_world_size)
            dist.all_reduce(tensor_to_allreduce, group=self.data_parallel_group)

        if self.allreduce_always_fp32() and tensor is not tensor_to_allreduce:
            tensor.copy_(tensor_to_allreduce)

        return tensor

    def allreduce_and_copy(self, small_bucket):
        allreduced = self.allreduce_bucket(small_bucket)
        for buf, synced in zip(small_bucket, unflatten(allreduced, small_bucket)):
            buf.copy_(synced)

    def allreduce_no_retain(self, bucket, numel_per_bucket=500000000):
        small_bucket = []
        numel = 0
        for tensor in bucket:
            small_bucket.append(tensor)
            numel = numel + tensor.numel()
            if numel > numel_per_bucket:
                self.allreduce_and_copy(small_bucket)
                small_bucket = []
        if len(small_bucket) > 0:
            self.allreduce_and_copy(small_bucket)

    def buffered_allreduce_fallback(self, grads=None, elements_per_buffer=500000000):
        grads = []
        for param_name, param in self.module.named_parameters():
            if param.grad is not None:
                grad_data = param.grad.data
                param_name_root = param_name.split('.', 1)[0]
                if self.sparse_gradients_enabled(
                ) and param_name_root in self.csr_tensor_module_names:
                    grads.append(CSRTensor(grad_data))
                else:
                    grads.append(grad_data)

        split_buckets = split_half_float_double_csr(grads)

        for i, bucket_tuple in enumerate(split_buckets):
            bucket_type, bucket = bucket_tuple
            if bucket_type == CSRTensor.type():
                self.csr_allreduce_no_retain(bucket)
            else:
                self.allreduce_no_retain(bucket, numel_per_bucket=elements_per_buffer)

    def csr_allreduce_no_retain(self, bucket):
        allreduced_csrs = self.csr_allreduce_bucket(bucket)
        # Densify csr tensor and copy back to original location
        for csr in allreduced_csrs:
            dense_tensor = csr.to_dense()
            csr.orig_dense_tensor.copy_(dense_tensor)

    def csr_allreduce_bucket(self, bucket):
        csr_list = []
        for csr in bucket:
            csr_list.append(self.csr_allreduce(csr))
        return csr_list

    def csr_allreduce(self, csr):
        # Pre-divide for fp16 stability
        csr.values.div_(self.dp_world_size)

        indices_device_list = self.csr_all_gather(csr.indices)
        values_device_list = self.csr_all_gather(csr.values)

        csr.indices = torch.cat(indices_device_list)
        csr.values = torch.cat(values_device_list)
        return csr

    def csr_all_gather(self, value):
879
        my_size = torch.LongTensor([value.size()[0]]).to(self.device)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
880
881
882
883
884
885
886
887
        all_sizes = self.all_gather_scalar(my_size)
        max_size = torch.cat(all_sizes).max()
        fill_size = (max_size - my_size)

        assert value.dim() in [1, 2]
        if value.dim() == 1:
            if fill_size > 0:
                value = torch.cat([value, value.new_zeros(fill_size)])
888
            tensor_list = [value.new_zeros(max_size) for _ in range(self.dp_world_size)]
Olatunji Ruwase's avatar
Olatunji Ruwase committed
889
890
891
892
893
        else:
            if fill_size > 0:
                value = torch.cat([value, value.new_zeros(fill_size, value.size()[1])])
            tensor_list = [
                value.new_zeros(max_size,
894
                                value.size()[1]) for _ in range(self.dp_world_size)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
895
896
897
898
899
900
            ]

        dist.all_gather(tensor_list, value, group=self.data_parallel_group)
        tensors = []
        for dev_idx, t in enumerate(tensor_list):
            size = all_sizes[dev_idx][0]
901
902
903
            tensors.append(
                t.index_select(0,
                               torch.LongTensor(range(size)).to(self.device)))
Olatunji Ruwase's avatar
Olatunji Ruwase committed
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

        return tensors

    def all_gather_scalar(self, value):
        tensor_list = [value.new_zeros(value.size()) for _ in range(self.dp_world_size)]
        dist.all_gather(tensor_list, value, group=self.data_parallel_group)
        return tensor_list

    def module_state_dict(self, destination=None, prefix='', keep_vars=False):
        sd = self.module.state_dict(destination, prefix, keep_vars)
        return sd

    def load_module_state_dict(self, state_dict, strict=True):
        self.module.load_state_dict(state_dict, strict=strict)

    def _get_zero_ckpt_name(self, checkpoints_path, tag):

        mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
        pp_rank = torch.distributed.get_rank(group=self.optimizer.dp_process_group)

        filename = 'zero_pp_rank_{}'.format(pp_rank)
        zero_ckpt_name = os.path.join(
            checkpoints_path,
            str(tag),
            filename + '_mp_rank_{:02d}'.format(mp_rank) + 'optim_states.pt')
        return zero_ckpt_name

    def _get_ckpt_name(self, checkpoints_path, tag):

        mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
        ckpt_name = os.path.join(checkpoints_path,
                                 str(tag),
                                 'mp_rank_{:02d}'.format(mp_rank) + '_model_states.pt')
        return ckpt_name

    def _ensure_directory_exists(self, filename):
        dirname = os.path.dirname(filename)
        if not os.path.exists(dirname):
            os.makedirs(dirname)

944
    def load_checkpoint(self, load_dir, tag, load_optimizer_states=True):
Olatunji Ruwase's avatar
Olatunji Ruwase committed
945
946
947
948
949
        r"""Load training checkpoint

        Arguments:
            load_dir: Required. Directory to load the checkpoint from
            tag: Required. Checkpoint tag used as a unique identifier for the checkpoint. Ex. Global Step.
950
            load_optimizer_states: Optional. Boolean to load the training optimizer states from Checkpoint. Ex. ADAM's momentum and variance
Olatunji Ruwase's avatar
Olatunji Ruwase committed
951
952
953
954
955
        Return:
            load_path: Path of the loaded checkpoint. None if loading the checkpoint failed
            client_state: State dictionary used for loading required training states in the client code.
        """

956
        load_path, client_states = self._load_checkpoint(load_dir, tag, load_optimizer_states=load_optimizer_states)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
957
958

        if self.zero_optimization() and load_path is not None:
959
960
961
            self._load_zero_checkpoint(load_dir,
                                       tag,
                                       load_optimizer_states=load_optimizer_states)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
962
963
964

        return load_path, client_states

965
    def _load_checkpoint(self, load_dir, tag, load_optimizer_states=True):
Olatunji Ruwase's avatar
Olatunji Ruwase committed
966
967
968
969
970
971
972
973
974
975
976
977
978
979

        load_path = self._get_ckpt_name(load_dir, tag)

        if not os.path.exists(load_path):
            logging.warn(
                'Client provided checkpoint load path: {} does not exist ... skip checkpoint load'
                .format(load_path))
            return None, None

        logging.info('Loading checkpoint: {}'.format(load_path))
        checkpoint = torch.load(load_path, map_location=lambda storage, loc: storage)

        self.load_module_state_dict(checkpoint['module'])
        if not self.zero_optimization():
980
981
            self.optimizer.load_state_dict(checkpoint['optimizer'],
                                           load_optimizer_states=load_optimizer_states)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

        if self.lr_scheduler is not None:
            self.lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])

        self.csr_tensor_module_names = checkpoint['csr_tensor_module_names']
        self.global_steps = checkpoint['global_steps']
        self.skipped_steps = checkpoint['skipped_steps']
        deepspeed_states = [
            'module',
            'optimizer',
            'csr_tensor_module_names',
            'skipped_steps',
            'global_step'
        ]
        client_state = {
            key: value
            for key,
            value in checkpoint.items() if not key in deepspeed_states
        }

        return load_path, client_state

1004
    def _load_zero_checkpoint(self, load_dir, tag, load_optimizer_states=True):
Olatunji Ruwase's avatar
Olatunji Ruwase committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
        zero_checkpoint_name = self._get_zero_ckpt_name(load_dir, tag)

        if not os.path.exists(zero_checkpoint_name):
            logging.warn(
                'Client provided checkpoint load path: {} does not exist ... skip checkpoint load'
                .format(zero_checkpoint_name))
            return None

        zero_sd = torch.load(zero_checkpoint_name, map_location='cpu')
1014
1015
        self.optimizer.load_state_dict(zero_sd['optimizer_state_dict'],
                                       load_optimizer_states=load_optimizer_states)
Olatunji Ruwase's avatar
Olatunji Ruwase committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        logging.info('loading zero checkpoint {}'.format(zero_checkpoint_name))

    def save_checkpoint(self, save_dir, tag, client_state={}):
        r"""Save training checkpoint

        Arguments:
            save_dir: Required. Directory for saving the checkpoint
            tag: Required. Checkpoint tag used as a unique identifier for the checkpoint. Ex. Global Step.
            client_state: Optional. State dictionary used for saving required training states in the client code.
        """

        #This is to make sure the checkpoint names are created without collision
        #There seems to be issue creating them in parallel
        self._create_checkpoint_files(save_dir, tag)

        try:
            if self.save_non_zero_checkpoint:
                self._save_checkpoint(save_dir, tag, client_state=client_state)

            if self.save_zero_checkpoint:
                self._save_zero_checkpoint(save_dir, tag)
        except:
            logging.error(f'Failed Saving model checkpoint to {save_dir} with tag {tag}')
            return False
        return True

    def _create_checkpoint_files(self, save_dir, tag):

        #checkpoint files are created sequentially
1045
1046
        for rank in range(self.world_size):
            if rank == self.global_rank:
Olatunji Ruwase's avatar
Olatunji Ruwase committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
                try:
                    if self.save_non_zero_checkpoint:
                        checkpoint_name = self._get_ckpt_name(save_dir, tag)
                        self._ensure_directory_exists(checkpoint_name)

                    if self.save_zero_checkpoint:
                        checkpoint_name = self._get_zero_ckpt_name(save_dir, tag)
                        self._ensure_directory_exists(checkpoint_name)
                except:
                    logging.error(
                        f'Failed Saving model checkpoint to {save_dir} with tag {tag}')
                    return False
            dist.barrier()

    def _save_checkpoint(self, save_dir, tag, client_state={}):

        save_path = self._get_ckpt_name(save_dir, tag)
        #self._ensure_directory_exists(save_path)

        state = {
            'module':
            self.module_state_dict(),
            'optimizer':
            self.optimizer.state_dict()
            if self.optimizer and not self.zero_optimization() else None,
            'lr_scheduler':
            self.lr_scheduler.state_dict() if self.lr_scheduler is not None else None,
            'csr_tensor_module_names':
            self.csr_tensor_module_names,
            'skipped_steps':
            self.skipped_steps,
            'global_steps':
            self.global_steps,
        }
        state.update(client_state)

        logging.info('Saving model checkpoint: {}'.format(save_path))
        torch.save(state, save_path)

    def _save_zero_checkpoint(self, save_path, tag):
        try:
            zero_checkpoint_name = self._get_zero_ckpt_name(save_path, tag)
            #self._ensure_directory_exists(zero_checkpoint_name)

        except:
            logging.error(
                f'Failed Saving Zero model checkpoint to {save_path} with tag {tag}')

        zero_sd = {'optimizer_state_dict': self.optimizer.state_dict()}
        torch.save(zero_sd, zero_checkpoint_name)
        logging.info('zero checkpoint saved {}'.format(zero_checkpoint_name))