"CONTRIBUTING.md" did not exist on "478602ba59c0bfe7ab9a094b9f1b7b33cfeecba4"
sparse_attn.py 3.03 KB
Newer Older
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
1
2
3
"""
Copyright 2020 The Microsoft DeepSpeed Team
"""
4
5
6
import warnings
from .builder import OpBuilder

aiss's avatar
aiss committed
7
8
9
10
11
try:
    from packaging import version as pkg_version
except ImportError:
    pkg_version = None

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

class SparseAttnBuilder(OpBuilder):
    BUILD_VAR = "DS_BUILD_SPARSE_ATTN"
    NAME = "sparse_attn"

    def __init__(self):
        super().__init__(name=self.NAME)

    def absolute_name(self):
        return f'deepspeed.ops.sparse_attention.{self.NAME}_op'

    def sources(self):
        return ['csrc/sparse_attention/utils.cpp']

    def cxx_args(self):
        return ['-O2', '-fopenmp']

aiss's avatar
aiss committed
29
    def is_compatible(self, verbose=True):
30
        # Check to see if llvm and cmake are installed since they are dependencies
aiss's avatar
aiss committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
        #required_commands = ['llvm-config|llvm-config-9', 'cmake']
        #command_status = list(map(self.command_exists, required_commands))
        #deps_compatible = all(command_status)

#####aiss debug 0506##############
        if self.is_rocm_pytorch():
        #    self.warning(f'{self.NAME} is not compatible with ROCM')
        #    return False
            return True
        try:
            import torch
        except ImportError:
            self.warning(f"unable to import torch, please install it first")
            return False
45

46
47
48
49
50
51
        # torch-cpu will not have a cuda version
        if torch.version.cuda is None:
            cuda_compatible = False
            self.warning(f"{self.NAME} cuda is not available from torch")
        else:
            major, minor = torch.version.cuda.split('.')[:2]
aiss's avatar
aiss committed
52
53
            cuda_compatible = (int(major) == 10
                               and int(minor) >= 1) or (int(major) >= 11)
54
            if not cuda_compatible:
aiss's avatar
aiss committed
55
                self.warning(f"{self.NAME} requires CUDA version 10.1+")
56

57
58
59
60
61
62
63
64
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        torch_compatible = TORCH_MAJOR == 1 and TORCH_MINOR >= 5
        if not torch_compatible:
            self.warning(
                f'{self.NAME} requires a torch version >= 1.5 but detected {TORCH_MAJOR}.{TORCH_MINOR}'
            )

aiss's avatar
aiss committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        try:
            import triton
        except ImportError:
            # auto-install of triton is broken on some systems, reverting to manual install for now
            # see this issue: https://github.com/microsoft/DeepSpeed/issues/1710
            self.warning(
                f"please install triton==1.0.0 if you want to use sparse attention")
            return False

        if pkg_version:
            installed_triton = pkg_version.parse(triton.__version__)
            triton_mismatch = installed_triton != pkg_version.parse("1.0.0")
        else:
            installed_triton = triton.__version__
            triton_mismatch = installed_triton != "1.0.0"

        if triton_mismatch:
            self.warning(
                f"using untested triton version ({installed_triton}), only 1.0.0 is known to be compatible"
            )
            return False

        return super().is_compatible(verbose) and torch_compatible and cuda_compatible