cpu_adagrad.cpp 7.82 KB
Newer Older
aiss's avatar
aiss committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#include "cpu_adagrad.h"
#include <cuda_runtime_api.h>
#include <math.h>
#include <omp.h>
#include <torch/extension.h>
#include <iostream>
#include <memory>
#include <type_traits>
#include <unordered_map>
#include "cublas_v2.h"
#include "cuda.h"
#include "curand.h"
#include "custom_cuda_layers.h"

static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;

// C++ interface

void Adagrad_Optimizer::Step_1(float* _params,
                               float* grads,
                               float* _exp_avg_sq,
                               size_t _param_size,
                               __half* dev_params,
                               bool half_precision)
{
    size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
    Step_AVX<1>(
        &rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
#endif
    if (_param_size > rounded_size) {
        float step_size = -1 * _alpha;
        __half* grads_cast_h;
        __half* params_cast_h;
        if (half_precision) {
            grads_cast_h = reinterpret_cast<__half*>(grads);
            params_cast_h = reinterpret_cast<__half*>(_params);
        }
        for (size_t t = rounded_size; t < _param_size; t += TILE) {
            size_t copy_size = TILE;
            if ((t + TILE) > _param_size) copy_size = _param_size - t;
            size_t offset = copy_size + t;
            if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
#pragma omp parallel for
            for (size_t k = t; k < offset; k++) {
                float grad = half_precision ? (float)grads_cast_h[k] : grads[k];
                float param = half_precision ? (float)params_cast_h[k] : _params[k];
                float momentum = grads[k];
                float variance = _exp_avg_sq[k];
                if (_weight_decay > 0) { grad = param * _weight_decay + grad; }

                variance += grad * grad;

                grad = sqrt(variance);
                grad += _eps;
                grad = momentum / grad;
                param = grad * step_size + param;
                if (dev_params) _doubled_buffer[_buf_index][k - t] = param;

                if (half_precision)
                    params_cast_h[k] = (__half)param;
                else
                    _params[k] = param;
                // STORE UPDATE TERM TO GRAD'S MEMORY
                grads[k] = grad * step_size;
                _exp_avg_sq[k] = variance;
            }
            if (dev_params) {
                launch_param_update(
                    _doubled_buffer[_buf_index], dev_params + t, (copy_size), _streams[_buf_index]);
                _buf_index = !_buf_index;
            }
        }
    }
}

void Adagrad_Optimizer::Step_4(float* _params,
                               float* grads,
                               float* _exp_avg_sq,
                               size_t _param_size,
                               __half* dev_params,
                               bool half_precision)
{
    size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
    Step_AVX<4>(
        &rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
#endif
    if (_param_size > rounded_size)
        Step_1((_params + rounded_size),
               (grads + rounded_size),
               (_exp_avg_sq + rounded_size),
               (_param_size - rounded_size),
               (dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
               half_precision);
}

int create_adagrad_optimizer(int optimizer_id,
                             float alpha = 1e-2,
                             float eps = 1e-8,
                             float weight_decay = 0,
                             bool should_log = false)
{
    auto opt = std::make_shared<Adagrad_Optimizer>(alpha, eps, weight_decay);

    s_optimizers[optimizer_id] = opt;

    if (should_log) {
        std::string avx_type = "";
#if defined(__AVX512__)
        avx_type = "AVX512";
#else
#if defined(__AVX256__)
        avx_type = "AVX2";
#else
        avx_type = "scalar";
#endif
#endif

        printf("Adagrad Optimizer #%d is created with %s arithmetic capability.\n",
               optimizer_id,
               avx_type.c_str());
        printf("Config: alpha=%f, weight_decay=%f\n", alpha, weight_decay);
    }

    return 0;
}

void Adagrad_Optimizer::Step_8(float* _params,
                               float* grads,
                               float* _exp_avg_sq,
                               size_t _param_size,
                               __half* dev_params,
                               bool half_precision)
{
    size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
    Step_AVX<8>(
        &rounded_size, _params, grads, _exp_avg_sq, _param_size, dev_params, half_precision);
#endif
    if (_param_size > rounded_size)
        Step_4((_params + rounded_size),
               (grads + rounded_size),
               (_exp_avg_sq + rounded_size),
               (_param_size - rounded_size),
               (dev_params != nullptr ? (dev_params + rounded_size) : dev_params),
               half_precision);
}

int ds_adagrad_step(int optimizer_id,
                    size_t step,
                    float lr,
                    float epsilon,
                    float weight_decay,
                    torch::Tensor& params,
                    torch::Tensor& grads,
                    torch::Tensor& exp_avg_sq)
{
    auto params_c = params.contiguous();
    auto grads_c = grads.contiguous();
    auto exp_avg_sq_c = exp_avg_sq.contiguous();

    float* params_ptr = (float*)params_c.data_ptr();
    float* grads_ptr = (float*)grads_c.data_ptr();
    float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();

    std::shared_ptr<Adagrad_Optimizer> opt =
        std::static_pointer_cast<Adagrad_Optimizer>(s_optimizers[optimizer_id]);
    opt->IncrementStep(step);
    opt->update_state(lr, epsilon, weight_decay);
    opt->Step_8(params_ptr, grads_ptr, exp_avg_sq_ptr, params_c.size(0));

    opt->SynchronizeStreams();
    return 0;
}

int ds_adagrad_step_plus_copy(int optimizer_id,
                              size_t step,
                              float lr,
                              float epsilon,
                              float weight_decay,
                              torch::Tensor& params,
                              torch::Tensor& grads,
                              torch::Tensor& exp_avg_sq,
                              torch::Tensor& gpu_params)
{
    auto params_c = params.contiguous();
    auto gpu_params_c = gpu_params.contiguous();
    auto exp_avg_sq_c = exp_avg_sq.contiguous();
    auto grads_c = grads.contiguous();

    float* params_ptr = (float*)params_c.data_ptr();
    float* grads_ptr = (float*)grads_c.data_ptr();
    __half* gpu_params_ptr = (__half*)gpu_params_c.data_ptr();
    float* exp_avg_sq_ptr = (float*)exp_avg_sq_c.data_ptr();

    std::shared_ptr<Adagrad_Optimizer> opt =
        std::static_pointer_cast<Adagrad_Optimizer>(s_optimizers[optimizer_id]);
    opt->IncrementStep(step);
    opt->update_state(lr, epsilon, weight_decay);
    opt->Step_8(params_ptr,
                grads_ptr,
                exp_avg_sq_ptr,
                params_c.size(0),
                gpu_params_ptr,
                (params.options().dtype() == at::kHalf));

    opt->SynchronizeStreams();
    return 0;
}

int destroy_adagrad_optimizer(int optimizer_id)
{
    s_optimizers.erase(optimizer_id);

    return 0;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
    m.def("adagrad_update", &ds_adagrad_step, "DeepSpeed CPU Adagrad update (C++)");
    m.def("adagrad_update_copy",
          &ds_adagrad_step_plus_copy,
          "DeepSpeed CPU Adagrad update and param copy (C++)");
    m.def("create_adagrad", &create_adagrad_optimizer, "DeepSpeed CPU Adagrad (C++)");
    m.def("destroy_adagrad", &destroy_adagrad_optimizer, "DeepSpeed CPU Adagrad destroy (C++)");
}