- 15 May, 2022 1 commit
-
-
John Reese authored
Summary: Applies new import merging and sorting from µsort v1.0. When merging imports, µsort will make a best-effort to move associated comments to match merged elements, but there are known limitations due to the diynamic nature of Python and developer tooling. These changes should not produce any dangerous runtime changes, but may require touch-ups to satisfy linters and other tooling. Note that µsort uses case-insensitive, lexicographical sorting, which results in a different ordering compared to isort. This provides a more consistent sorting order, matching the case-insensitive order used when sorting import statements by module name, and ensures that "frog", "FROG", and "Frog" always sort next to each other. For details on µsort's sorting and merging semantics, see the user guide: https://usort.readthedocs.io/en/stable/guide.html#sorting Reviewed By: lisroach Differential Revision: D36402205 fbshipit-source-id: a4efc688d02da80c6e96685aa8eb00411615a366
-
- 14 May, 2022 1 commit
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/242 Reviewed By: newstzpz Differential Revision: D36297282 fbshipit-source-id: 8efb19b3186f6978283f4e17e0628b55c2ec816e
-
- 12 May, 2022 1 commit
-
-
John Reese authored
Summary: Applies the black-fbsource codemod with the new build of pyfmt. paintitblack Reviewed By: lisroach Differential Revision: D36324783 fbshipit-source-id: 280c09e88257e5e569ab729691165d8dedd767bc
-
- 29 Apr, 2022 1 commit
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/228 This diff solves https://github.com/facebookresearch/d2go/issues/226 Reviewed By: tglik Differential Revision: D36026321 fbshipit-source-id: 216b0bf7bc48c45deb093c238d70de2b40bc37a3
-
- 26 Apr, 2022 2 commits
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/221 Reviewed By: tglik Differential Revision: D35855051 fbshipit-source-id: f742dfbc91bb7a20f632a508743fa93e3a7e9aa9
-
Jonathan Zeltser authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/202 This diff print the diff between the default config and the full config at the start of the run Reviewed By: wat3rBro Differential Revision: D35346096 fbshipit-source-id: 1ce9b58a8d613d1dd572358ce1e51462c90cb337
-
- 25 Apr, 2022 1 commit
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/220 Differential Revision: D35853885 fbshipit-source-id: 08d5188d8cd7310f306d07e22cee96bc4d7e06c8
-
- 19 Apr, 2022 2 commits
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/210 Reviewed By: kimishpatel Differential Revision: D35631192 fbshipit-source-id: a713d86734c6937c16c7ced705171db9ea2f0894
-
Lisa Roach authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/212 Applies new import merging and sorting from µsort v1.0. When merging imports, µsort will make a best-effort to move associated comments to match merged elements, but there are known limitations due to the diynamic nature of Python and developer tooling. These changes should not produce any dangerous runtime changes, but may require touch-ups to satisfy linters and other tooling. Note that µsort uses case-insensitive, lexicographical sorting, which results in a different ordering compared to isort. This provides a more consistent sorting order, matching the case-insensitive order used when sorting import statements by module name, and ensures that "frog", "FROG", and "Frog" always sort next to each other. For details on µsort's sorting and merging semantics, see the user guide: https://usort.readthedocs.io/en/stable/guide.html#sorting Reviewed By: jreese, wat3rBro Differential Revision: D35559673 fbshipit-source-id: feeae2465ac2b62c44a0e92dc566e9a386567c9d
-
- 15 Apr, 2022 1 commit
-
-
Yanghan Wang authored
Summary: X-link: https://github.com/facebookresearch/detectron2/pull/4132 X-link: https://github.com/fairinternal/detectron2/pull/568 Pull Request resolved: https://github.com/facebookresearch/d2go/pull/203 For full discussion: https://fb.workplace.com/groups/1405155842844877/posts/5744470455580039 Tracing the `.to(device)` will cause problem when moving the traced torchscript to another device (eg. from cpu to gpu, or even, from `cuda:0` to `cuda:1`). The reason is that `device` is not a `torch.Tensor`, so the tracer just hardcode the value during tracing. The solution is scripting the casting operation. Here's the code snippet illustrating this: ``` # define the MyModel similar to GeneralizedRCNN, which casts the input to the model's device class MyModel(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): # cast the input to the same device as this model, this makes it possible to # take a cpu tensor as input when the model is on GPU. x = x.to(self.conv1.weight.device) x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) # export the model by tracing model = MyModel() x = torch.zeros([1, 3, 32, 32]) ts = torch.jit.trace(model, x) print(ts.graph) # ===================================================== graph(%self.1 : __torch__.MyModel, %x : Float(1, 3, 32, 32, strides=[3072, 1024, 32, 1], requires_grad=0, device=cpu)): %conv2 : __torch__.torch.nn.modules.conv.___torch_mangle_0.Conv2d = prim::GetAttr[name="conv2"](%self.1) %conv1 : __torch__.torch.nn.modules.conv.Conv2d = prim::GetAttr[name="conv1"](%self.1) %14 : int = prim::Constant[value=6]() # <ipython-input-2-5abde0efc36f>:11:0 %15 : int = prim::Constant[value=0]() # <ipython-input-2-5abde0efc36f>:11:0 %16 : Device = prim::Constant[value="cpu"]() # <ipython-input-2-5abde0efc36f>:11:0 %17 : NoneType = prim::Constant() %18 : bool = prim::Constant[value=0]() # <ipython-input-2-5abde0efc36f>:11:0 %19 : bool = prim::Constant[value=0]() # <ipython-input-2-5abde0efc36f>:11:0 %20 : NoneType = prim::Constant() %input.1 : Float(1, 3, 32, 32, strides=[3072, 1024, 32, 1], requires_grad=0, device=cpu) = aten::to(%x, %14, %15, %16, %17, %18, %19, %20) # <ipython-input-2-5abde0efc36f>:11:0 %72 : Tensor = prim::CallMethod[name="forward"](%conv1, %input.1) %input.5 : Float(1, 20, 28, 28, strides=[15680, 784, 28, 1], requires_grad=1, device=cpu) = aten::relu(%72) # /mnt/xarfuse/uid-20293/a90d1698-seed-nspid4026533681_cgpid21128615-ns-4026533618/torch/nn/functional.py:1406:0 %73 : Tensor = prim::CallMethod[name="forward"](%conv2, %input.5) %61 : Float(1, 20, 24, 24, strides=[11520, 576, 24, 1], requires_grad=1, device=cpu) = aten::relu(%73) # /mnt/xarfuse/uid-20293/a90d1698-seed-nspid4026533681_cgpid21128615-ns-4026533618/torch/nn/functional.py:1406:0 return (%61) # ===================================================== # PyTorch cuda works model = copy.deepcopy(model) model.to("cuda") y = model(x) # torchscript cpu works y = ts(x) # torchscript cuda doesn't work ts = ts.to("cuda") y = ts(x) # ===================================================== RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-4-2aece3ad6c9a> in <module> 7 # torchscript cuda doesn't work 8 ts = ts.to("cuda") ----> 9 y = ts(x) /mnt/xarfuse/uid-20293/a90d1698-seed-nspid4026533681_cgpid21128615-ns-4026533618/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs) 1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1109 or _global_forward_hooks or _global_forward_pre_hooks): -> 1110 return forward_call(*input, **kwargs) 1111 # Do not call functions when jit is used 1112 full_backward_hooks, non_full_backward_hooks = [], [] RuntimeError: The following operation failed in the TorchScript interpreter. # ===================================================== # One solution is scripting the casting instead of tracing it, the folloing code demonstrate how to do it. We need to use mixed scripting/tracing torch.jit.script_if_tracing def cast_device_like(src: torch.Tensor, dst: torch.Tensor) -> torch.Tensor: return src.to(dst.device) class MyModel2(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): # cast the input to the same device as this model, this makes it possible to # take a cpu tensor as input when the model is on GPU. x = cast_device_like(x, self.conv1.weight) x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) # export the model by tracing model = MyModel2() x = torch.zeros([1, 3, 32, 32]) ts = torch.jit.trace(model, x) print(ts.graph) # ===================================================== graph(%self.1 : __torch__.MyModel2, %x : Float(1, 3, 32, 32, strides=[3072, 1024, 32, 1], requires_grad=0, device=cpu)): %conv2 : __torch__.torch.nn.modules.conv.___torch_mangle_5.Conv2d = prim::GetAttr[name="conv2"](%self.1) %conv1 : __torch__.torch.nn.modules.conv.___torch_mangle_4.Conv2d = prim::GetAttr[name="conv1"](%self.1) %conv1.1 : __torch__.torch.nn.modules.conv.___torch_mangle_4.Conv2d = prim::GetAttr[name="conv1"](%self.1) %weight.5 : Tensor = prim::GetAttr[name="weight"](%conv1.1) %14 : Function = prim::Constant[name="cast_device_like"]() %input.1 : Tensor = prim::CallFunction(%14, %x, %weight.5) %68 : Tensor = prim::CallMethod[name="forward"](%conv1, %input.1) %input.5 : Float(1, 20, 28, 28, strides=[15680, 784, 28, 1], requires_grad=1, device=cpu) = aten::relu(%68) # /mnt/xarfuse/uid-20293/a90d1698-seed-nspid4026533681_cgpid21128615-ns-4026533618/torch/nn/functional.py:1406:0 %69 : Tensor = prim::CallMethod[name="forward"](%conv2, %input.5) %55 : Float(1, 20, 24, 24, strides=[11520, 576, 24, 1], requires_grad=1, device=cpu) = aten::relu(%69) # /mnt/xarfuse/uid-20293/a90d1698-seed-nspid4026533681_cgpid21128615-ns-4026533618/torch/nn/functional.py:1406:0 return (%55) # ===================================================== # PyTorch cuda works model = copy.deepcopy(model) model.to("cuda") y = model(x) # torchscript cpu works y = ts(x) # Note that now torchscript cuda works ts = ts.to("cuda") y = ts(x) print(y.device) # ===================================================== cuda:0 # ===================================================== ``` For D2 (https://github.com/facebookresearch/d2go/commit/87374efb134e539090e0b5c476809dc35bf6aedb), this diff creates a `move_tensor_device_same_as_another(A, B)` function to replace `A.to(B.device)`. This diff updates the `rcnn.py` and all its utils. For D2 (https://github.com/facebookresearch/d2go/commit/87374efb134e539090e0b5c476809dc35bf6aedb)Go, since the exported model will become device-agnostic, we can remove the "_gpu" from predictor-type. Update (April 11): Add test to cover tracing on one device and move traced model to another device for inference. When GPU is available, it'll trace on `cuda:0` and run inference on `cpu`, `cuda:0` (and `cuda:N-1` if available). Summary of the device related patterns - The usage of `.to(dtype=another_dype)` won't affect device. - Explicit device casting like `.to(device)` can be generally replaced by `move_device_like`. - For creating variable directly on device (eg. `torch.zeros`, `torch.arange`), we can replace then with ScriptModule to avoid first create on CPU and then move to new device. - Creating things on tracing device and then moving to new device is dangerous, because tracing device (eg. `cuda:0`) might not be available (eg. running on CPU-only machine). - It's hard to write `image_list.py` in this pattern because the size behaves differently during tracing (int vs. scalar tensor), in this diff, still create on CPU first and then move to target device. Reviewed By: tglik Differential Revision: D35367772 fbshipit-source-id: 02d07e3d96da85f4cfbeb996e3c14c2a6f619beb
-
- 07 Apr, 2022 1 commit
-
-
Owen Wang authored
Summary: Allow string name of export type to indicate which mobile opt backend user wants to trigger. Reviewed By: wat3rBro Differential Revision: D35375928 fbshipit-source-id: dc3f91564681344e1d43862423ab5dc63b6644d3
-
- 05 Apr, 2022 2 commits
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/200 Currently when exporting the RCNN model, we call it with `self.model.inference(inputs, do_postprocess=False)[0]`, therefore the output of exported model is not post-processed, eg. the mask is in the squared shape. This diff adds the option to include postprocess in the exported model. Worth noting that since the input is a single tensor, the post-process doesn't resize the output to original resolution, and we can't apply the post-process twice to further resize it in the Predictor's PostProcessFunc, add an assertion to raise error in this case. But this is fine for most production use cases where the input is not resized. Set `RCNN_EXPORT.INCLUDE_POSTPROCESS` to `True` to enable this. Reviewed By: tglik Differential Revision: D34904058 fbshipit-source-id: 65f120eadc9747e9918d26ce0bd7dd265931cfb5
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/199 - `create_fake_detection_data_loader` currently doesn't take `cfg` as input, sometimes we need to test the augmentation that needs more complicated different cfg. - name is a bit bad, rename it to `create_detection_data_loader_on_toy_dataset`. - width/height were the resized size previously, we want to change it to the size of data source (image files) and use `cfg` to control resized size. Update V3: In V2 there're some test failures, the reason is that V2 is building data loader (via GeneralizedRCNN runner) using actual test config instead of default config before this diff + dataset name change. In V3 we uses the test's runner instead of default runner for the consistency. This reveals some real bugs that we didn't test before. Reviewed By: omkar-fb Differential Revision: D35238890 fbshipit-source-id: 28a6037374e74f452f91b494bd455b38d3a48433
-
- 24 Mar, 2022 2 commits
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/191 When exporting model to torchscript (using `MODEL.DEVICE = "cpu"`), mean/std are constant instead of model parameters. Therefore after casting the torchscript to CUDA, the mean/std remains on cpu. This will cause problem when running inference on GPU. The fix is exporting the model with `MODEL.DEVICE = "cuda"`. However D2 (https://github.com/facebookresearch/d2go/commit/87374efb134e539090e0b5c476809dc35bf6aedb)Go internally uses "cpu" during export (via cli: https://fburl.com/code/4mpk153i, via workflow: https://fburl.com/code/zcj5ud4u) by default. For CLI, user can manually set `--device`, but for workflow it's hard to do so. Further more it's hard to support mixed model using single `--device` option. So this diff adds a special handling in the RCNN's `default_prepare_for_export` to bypass the `--device` option. Reviewed By: zhanghang1989 Differential Revision: D35097613 fbshipit-source-id: df9f44f49af1f0fd4baf3d7ccae6c31e341f3ef6
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/192 Nowadays lightning will initialize process group when using ddp strategy, since `TestLightningTrainNet` does a training with ddp strategy (https://fburl.com/code/a9yp0kzy), the process group ended up initialized after running the test. However there're other tests that will also set up ddp and thus expect non-initialized process group, this is not a problem on sandcastle since the tests run separately, however in OSS env, the tests are running together, so the error happens (eg. https://github.com/facebookresearch/d2go/runs/5668912203?check_suite_focus=true). This diff adds a clean up step in `TestLightningTrainNet`. Reviewed By: tglik Differential Revision: D35099944 fbshipit-source-id: f5b42b2a87d4efd9aa0ed97e6bd2140d80ab9522
-
- 16 Mar, 2022 2 commits
-
-
Yanghan Wang authored
Summary: D33301363 changes the signature of `update_cfg` from `update_cfg(cfg, *updaters)` to `update_cfg(cfg, updaters, new_allowed)`, while the call sites are not updated. Eg. https://www.internalfb.com/code/fbsource/[9e071979a62ba7fd3d7a71dee1f0809815cbaa43]/fbcode/fblearner/flow/projects/mobile_vision/detectron2go/core/workflow.py?lines=221-225, the `merge_from_list_updater(e2e_train.overwrite_opts),` is then not used. For the fix: - Since there're a lot of call sites for `update_cfg` it's better to keep the original signature. - ~~~The `new_allowed` can actually be passed to each individual updater instead of the `update_cfg`, this also gives finer control.~~~ - Make override the `merge_from_list` to make it respect `new_allowed`. - Preserve the `new_allowed` for all nodes (not only the root) in the FLOW Future calls. Reviewed By: zhanghang1989 Differential Revision: D34840001 fbshipit-source-id: 14aff6bec75a8b53d4109e6cd73d2494f68863b4
-
Ananth Subramaniam authored
Reviewed By: kazhang Differential Revision: D34669519 fbshipit-source-id: 8cfee968104c823a55960f2730d8e888ac1f298e
-
- 08 Mar, 2022 2 commits
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/187 Reviewed By: ananthsub, zhanghang1989 Differential Revision: D34650467 fbshipit-source-id: b9518e5dd673b709320b87e57a43d053eca3aabe
-
Ananth Subramaniam authored
Reviewed By: tangbinh Differential Revision: D34669294 fbshipit-source-id: c87bc1d4c589518f7c9fc21e6dfe27b03e700b6d
-
- 05 Mar, 2022 1 commit
-
-
Ananth Subramaniam authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/188 Reviewed By: tangbinh, wat3rBro Differential Revision: D34658350 fbshipit-source-id: 36e8c1e8c5dab97990b1d9a5b1a58667e0e3c455
-
- 04 Mar, 2022 4 commits
-
-
Binh Tang authored
Summary: ### New commit log messages - [7e2f9fbad Refactor codebase to use `trainer.loggers` over `trainer.logger` when needed (#11920)](https://github.com/PyTorchLightning/pytorch-lightning/pull/11920) Reviewed By: edward-io Differential Revision: D34583686 fbshipit-source-id: 98e557b761555c24ff296fff3ec6881d141fa777
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/185 The `DiskCachedDatasetFromList` was originally in the `d2go/data/utils.py`, so the class is declared by default. Therefore the clean up call (https://fburl.com/code/cu7hswhx) is always called even when the feature is not enabled. This diff move it to a new place and delay the import, so the clean up won't run. Reviewed By: tglik Differential Revision: D34601363 fbshipit-source-id: 734bb9b2c7957d7437ad40c4bfe60a441ec2f23a
-
Sam Tsai authored
Summary: Add option for controlling empty annotation filtering. Reviewed By: zhanghang1989 Differential Revision: D34365265 fbshipit-source-id: 261c6879636f19138de781098f47dee4909de9e7
-
Sam Tsai authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/179 Refactored extended coco to fix lint errors and also simpler error reporting. Differential Revision: D34365252 fbshipit-source-id: 8bf221eba5b8c5e63ddcf5ca19d7486726aff797
-
- 25 Feb, 2022 1 commit
-
-
Yanghan Wang authored
Summary: # TLDR: To use this feature, setting `D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)GO_DATA.DATASETS.DISK_CACHE.ENABLED` to `True`. To support larger datasets, one idea is to offload the DatasetFromList from RAM to disk to avoid OOM. `DiskCachedDatasetFromList` is a drop-in replacement for `DatasetFromList`, during `__init__`, it puts serialized list onto the disk and only stores the mapping in the RAM (the mapping could be represented by a list of addresses or even just a single number, eg. every N item is grouped together and N is the fixed number), then the `__getitem__` reads data from disk and deserializes the element. Some more details: - Originally the RAM cost is `O(s*G*N)` where `s` is average data size, `G` is #GPUs, `N` is dataset size. When diskcache is enabled, depending on the type of mapping, the final RAM cost is constant or O(N) with a very small coefficient; the final disk cost is `O(s*N)`. - The RAM usage is peaked at preparing stage, the cost is `O(s*N)`, if this becomes bottleneck, we probably need to think about modifying the data loading function (registered in DatasetCatalog). We also change the data loading function to only run on local master process, otherwise RAM will be peaked at `O(s*G*N)` if all processes are loading data at the same time. - The time overhead of initialization is linear to dataset size, this is capped by disk I/O speed and performance of diskcache library. Benchmark shows it can at least handle 1GB per minute if writing in chucks (much worse if not), which should be fine in most use cases. - There're also a bit time overhead when reading the data, but this is usually negligible compared with reading files from external storage like manifold. It's not very easy to integrate this into D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)/D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)Go cleanly without patching the code, several approaches: - Integrate into D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8) directly (modifying D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)'s `DatasetFromList` and `get_detection_dataset_dicts`): might be the cleanest way, but D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8) doesn't depend on `diskcache` and this is a bit experimental right now. - D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)Go uses its own version of [_train_loader_from_config](https://fburl.com/code/0gig5tj2) that wraps the returned `dataset`. It has two issues: 1): it's hard to make the underlying `get_detection_dataset_dicts` only run on local master, partly because building sampler uses `comm.shared_random_seed()`, things can easily go out-of -sync 2): needs some duplicated code for test loader. - pass new arguments along the way, it requires touching D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)'s code as well, and we need to carry new arguments in lot of places. Lots of TODOs: - Automatically enable this when dataset is larger than certain threshold (need to figure out how to do this in multiple GPUs, some communication is needed if only local master is reading the dataset). - better cleanups - figure out the best way of integrating this (patching is a bit hacky) into D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)/D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)Go. - run more benchmarks - add unit test (maybe also enable integration tests using 2 nodes 2 GPUs for distributed settings) Reviewed By: sstsai-adl Differential Revision: D27451187 fbshipit-source-id: 7d329e1a3c3f9ec1fb9ada0298a52a33f2730e15
-
- 23 Feb, 2022 2 commits
-
-
Binh Tang authored
Summary: We proactively remove references to the deprecated DDP accelerator to prepare for the breaking changes following the release of PyTorch Lighting 1.6 (see T112240890). Differential Revision: D34295318 fbshipit-source-id: 7b2245ca9c7c2900f510722b33af8d8eeda49919
-
Sam Tsai authored
Summary: Pull Request resolved: https://github.com/facebookresearch/mobile-vision/pull/61 Pull Request resolved: https://github.com/facebookresearch/d2go/pull/177 Adhoc datasets currently use default register functions. Changed to checking if it was registered in a look up table for injected coco and just using that instead. Differential Revision: D33489049 fbshipit-source-id: bcb12bba49749a875ea80ae61f4eecc4a5d1e31a
-
- 14 Jan, 2022 1 commit
-
-
Sam Tsai authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/160 If the returned object of visualize_train_input is a dictionary, use the key as tag suffix and the values as separate output images. Reviewed By: zhanghang1989, wat3rBro Differential Revision: D33468573 fbshipit-source-id: b0a47ba312ff59700534e917c62af1dfa83dd5be
-
- 13 Jan, 2022 1 commit
-
-
Tsahi Glik authored
Summary: Add support in the default lightning task to run a custom training step from Meta Arch if exists. The goal is to allow custom training step without the need to inherit from the default lightning task class and override it. This will allow us to use a signle lightning task and still allow users to customize the training step. In the long run this will be further encapsulated in modeling hook, making it more modular and compositable with other custom code. This change is a follow up from discussion in https://fburl.com/diff/yqlsypys Reviewed By: wat3rBro Differential Revision: D33534624 fbshipit-source-id: 560f06da03f218e77ad46832be9d741417882c56
-
- 12 Jan, 2022 1 commit
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/163 Make quantizing FPN work, note that this is not a proper fix, which might be making pytorch picking the D2 (https://github.com/facebookresearch/d2go/commit/7992f91324aee6ae59795063a007c6837e60cdb8)'s Conv2d, and we need to revert this diff if it's supported. Differential Revision: D33523917 fbshipit-source-id: 3d00f540a9fcb75a34125c244d86263d517a359f
-
- 08 Jan, 2022 1 commit
-
-
Sam Tsai authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/158 Add unit tests for visualization wrapper and dataloader visualization wrapper. Reviewed By: zhanghang1989, wat3rBro Differential Revision: D33457734 fbshipit-source-id: e5f946ae4ee711a0914d8ac65b96cac40e7ab13b
-
- 30 Dec, 2021 1 commit
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/152 Reviewed By: zhanghang1989 Differential Revision: D31591900 fbshipit-source-id: 6ee8124419d535caf03532eda4f729e707b6dda7
-
- 29 Dec, 2021 2 commits
-
-
Yanghan Wang authored
Summary: Pull Request resolved: https://github.com/facebookresearch/d2go/pull/154 Reviewed By: zhanghang1989 Differential Revision: D33352204 fbshipit-source-id: e1a9ac6eb2574dfe6931435275e27c9508f66352
-
Yanghan Wang authored
Summary: DDPPlugin has been renamed to DDPStrategy (as part of https://github.com/PyTorchLightning/pytorch-lightning/issues/10549), causing oss CI to fail. Simply skipping the import to unblock CI since DDP feature is not used in test. Reviewed By: kazhang Differential Revision: D33351636 fbshipit-source-id: 7a1881c8cd48d9ff17edd41137d27a976103fdde
-
- 22 Dec, 2021 1 commit
-
-
Sam Tsai authored
Summary: 1. Add registry for coco injection to allow for easier overriding of cococ injections 2. Coco loading currently is limited to certain keys. Adding option to allow for copying certain keys from the outputs. Reviewed By: zhanghang1989 Differential Revision: D33132517 fbshipit-source-id: 57ac4994a66f9c75457cada7e85fb15da4818f3e
-
- 18 Nov, 2021 1 commit
-
-
Ananth Subramaniam authored
Summary: ### New commit log messages fa0ed17f8 remove deprecated train_loop (#10482) Reviewed By: kandluis Differential Revision: D32454980 fbshipit-source-id: a35237dde06cc9ddac5373b75992ce88a6771c76
-
- 08 Nov, 2021 1 commit
-
-
Yanghan Wang authored
Reviewed By: sstsai-adl Differential Revision: D32216605 fbshipit-source-id: bebee1edae85e940c7dcc6a64dbe341a2fde36a2
-
- 28 Oct, 2021 1 commit
-
-
Kai Zhang authored
Summary: In quantization callback, we prepare the model with FX quantization API and only use the prepared model in training. However, when training in DDP, the parameters in the origin model still require grad, causing unused parameters RuntimeError. Previously, Lightning trainer train the model with find_unused_param flag, but if user manually disable it, they will get the runtime error. In this diff, the parameters in the origin model are frozen. We could consider deleting the origin model after preparation to save memory, but we might have to make some assumption on Lightning module structure, for example, `.model` is the origin model, so that we could `delattr(pl_module, "model")`. Reviewed By: wat3rBro Differential Revision: D31902368 fbshipit-source-id: 56eabb6b2296278529dd2b94d6aa4c9ec9e9ca6b
-
- 26 Oct, 2021 2 commits
-
-
Yanghan Wang authored
Summary: as title Reviewed By: Cysu Differential Revision: D31901433 fbshipit-source-id: 1749527c04c392c830e1a49bca8313ddf903d7b1
-
Yanghan Wang authored
Summary: FCOS is registered only because we make an import from `get_default_cfg`, if user don't call it (eg. using their own runner), they might find that the meta-arch is not registered. Reviewed By: ppwwyyxx Differential Revision: D31920026 fbshipit-source-id: 59eeeb3d1bf30d6b08463c2814930b1cadd7d549
-