Synchronize PyTorchLightning/pytorch-lightning (revision 0b843848@master) to...
Synchronize PyTorchLightning/pytorch-lightning (revision 0b843848@master) to github/third-party/PyTorchLightning/pytorch-lightning Summary: ### New commit log messages ## [UnReleased] - 2021-MM-DD ### Added - Added more explicit exception message when trying to execute `trainer.test()` or `trainer.validate()` with `fast_dev_run=True` ([#6667](https://github.com/PyTorchLightning/pytorch-lightning/pull/6667)) - Added `LightningCLI` class to provide simple reproducibility with minimum boilerplate training cli. ([#4492](https://github.com/PyTorchLightning/pytorch-lightning/pull/4492)) - Trigger warning when non-metric logged value with multi processes hasn't been reduced ([#6417](https://github.com/PyTorchLightning/pytorch-lightning/pull/6417)) - Added `gradient_clip_algorithm` argument to Trainer for gradient clipping by value ([#6123](https://github.com/PyTorchLightning/pytorch-lightning/pull/6123)). - Added a way to print to terminal without breaking up the progress bar ([#5470](https://github.com/PyTorchLightning/pytorch-lightning/pull/5470)) - Added support to checkpoint after training steps in `ModelCheckpoint` callback ([#6146](https://github.com/PyTorchLightning/pytorch-lightning/pull/6146)) - Added `checkpoint` parameter to callback's `on_save_checkpoint` hook ([#6072](https://github.com/PyTorchLightning/pytorch-lightning/pull/6072)) - Added `RunningStage.SANITY_CHECKING` ([#4945](https://github.com/PyTorchLightning/pytorch-lightning/pull/4945)) - Added `TrainerState.{FITTING,VALIDATING,TESTING,PREDICTING,TUNING}` ([#4945](https://github.com/PyTorchLightning/pytorch-lightning/pull/4945)) - Added `Trainer.validate()` method to perform one evaluation epoch over the validation set ([#4948](https://github.com/PyTorchLightning/pytorch-lightning/pull/4948)) - Added `LightningEnvironment` for Lightning-specific DDP ([#5915](https://github.com/PyTorchLightning/pytorch-lightning/pull/5915)) - Added `teardown()` hook to LightningDataModule ([#4673](https://github.com/PyTorchLightning/pytorch-lightning/pull/4673)) - Added `auto_insert_metric_name` parameter to `ModelCheckpoint` ([#6277](https://github.com/PyTorchLightning/pytorch-lightning/pull/6277)) - Added arg to `self.log` that enables users to give custom names when dealing with multiple dataloaders ([#6274](https://github.com/PyTorchLightning/pytorch-lightning/pull/6274)) - Added `teardown` method to `BaseProfiler` to enable subclasses defining post-profiling steps outside of `__del__` ([#6370](https://github.com/PyTorchLightning/pytorch-lightning/pull/6370)) - Added `setup` method to `BaseProfiler` to enable subclasses defining pre-profiling steps for every process ([#6633](https://github.com/PyTorchLightning/pytorch-lightning/pull/6633)) - Added no return warning to predict ([#6139](https://github.com/PyTorchLightning/pytorch-lightning/pull/6139)) - Added `Trainer.predict` config validation ([#6543](https://github.com/PyTorchLightning/pytorch-lightning/pull/6543)) - Added `AbstractProfiler` interface ([#6621](https://github.com/PyTorchLightning/pytorch-lightning/pull/6621)) - Added support for including module names for forward in the autograd trace of `PyTorchProfiler` ([#6349](https://github.com/PyTorchLightning/pytorch-lightning/pull/6349)) - Added support for the PyTorch 1.8.1 autograd profiler ([#6618](https://github.com/PyTorchLightning/pytorch-lightning/pull/6618)) - Added `outputs` parameter to callback's `on_validation_epoch_end` & `on_test_epoch_end` hooks ([#6120](https://github.com/PyTorchLightning/pytorch-lightning/pull/6120)) - Added `configure_sharded_model` hook ([#6679](https://github.com/PyTorchLightning/pytorch-lightning/pull/6679)) - Added support for `precision=64`, enabling training with double precision ([#6595](https://github.com/PyTorchLightning/pytorch-lightning/pull/6595)) - Added support for DDP communication hooks ([#6736](https://github.com/PyTorchLightning/pytorch-lightning/issues/6736)) - Added `artifact_location` argument to `MLFlowLogger` which will be passed to the `MlflowClient.create_experiment` call ([#6677](https://github.com/PyTorchLightning/pytorch-lightning/pull/6677)) - Added `model` parameter to precision plugins' `clip_gradients` signature ([#6764](https://github.com/PyTorchLightning/pytorch-lightning/pull/6764)) ### Changed - Renamed `pytorch_lightning.callbacks.swa` to `pytorch_lightning.callbacks.stochastic_weight_avg` ([#6259](https://github.com/PyTorchLightning/pytorch-lightning/pull/6259)) - Refactor `RunningStage` and `TrainerState` usage ([#4945](https://github.com/PyTorchLightning/pytorch-lightning/pull/4945)) - Changed `trainer.evaluating` to return `True` if validating or testing ([#4945](https://github.com/PyTorchLightning/pytorch-lightning/pull/4945)) - Changed `setup()` and `teardown()` stage argument to take any of `{fit,validate,test,predict}` ([#6386](https://github.com/PyTorchLightning/pytorch-lightning/pull/6386)) - Changed profilers to save separate report files per state and rank ([#6621](https://github.com/PyTorchLightning/pytorch-lightning/pull/6621)) - Changed `PyTorchProfiler` to use `torch.autograd.profiler.record_function` to record functions ([#6349](https://github.com/PyTorchLightning/pytorch-lightning/pull/6349)) ### Deprecated - `period` has been deprecated in favor of `every_n_val_epochs` in the `ModelCheckpoint` callback ([#6146](https://github.com/PyTorchLightning/pytorch-lightning/pull/6146)) - Deprecated `trainer.running_sanity_check` in favor of `trainer.sanity_checking` ([#4945](https://github.com/PyTorchLightning/pytorch-lightning/pull/4945)) - Deprecated `Profiler(output_filename)` in favor of `dirpath` and `filename` ([#6621](https://github.com/PyTorchLightning/pytorch-lightning/pull/6621)) - Deprecated `PytorchProfiler(profiled_functions)` in favor of `record_functions` ([#6349](https://github.com/PyTorchLightning/pytorch-lightning/pull/6349)) - Deprecated metrics in favor of `torchmetrics` ([#6505](https://github.com/PyTorchLightning/pytorch-lightning/pull/6505), [#6530](https://github.com/PyTorchLightning/pytorch-lightning/pull/6530), [#6540](https://github.com/PyTorchLightning/pytorch-lightning/pull/6540), [#6547](https://github.com/PyTorchLightning/pytorch-lightning/pull/6547), [#6515](https://github.com/PyTorchLightning/pytorch-lightning/pull/6515), [#6572](https://github.com/PyTorchLightning/pytorch-lightning/pull/6572), [#6573](https://github.com/PyTorchLightning/pytorch-lightning/pull/6573), [#6584](https://github.com/PyTorchLightning/pytorch-lightning/pull/6584), [#6636](https://github.com/PyTorchLightning/pytorch-lightning/pull/6636), [#6637](https://github.com/PyTorchLightning/pytorch-lightning/pull/6637), [#6649](https://github.com/PyTorchLightning/pytorch-lightning/pull/6649), [#6659](https://github.com/PyTorchLightning/pytorch-lightning/pull/6659), ) ### Removed - Removed support for passing a bool value to `profiler` argument of Trainer ([#6164](https://github.com/PyTorchLightning/pytorch-lightning/pull/6164)) - Removed no return warning from val/test step ([#6139](https://github.com/PyTorchLightning/pytorch-lightning/pull/6139)) - Removed passing a `ModelCheckpoint` instance to `Trainer(checkpoint_callback)` ([#6166](https://github.com/PyTorchLightning/pytorch-lightning/pull/6166)) - Removed deprecated Trainer argument `enable_pl_optimizer` and `automatic_optimization` ([#6163](https://github.com/PyTorchLightning/pytorch-lightning/pull/6163)) - Removed deprecated metrics ([#6161](https://github.com/PyTorchLightning/pytorch-lightning/pull/6161)) * from `pytorch_lightning.metrics.functional.classification` removed `to_onehot`, `to_categorical`, `get_num_classes`, `roc`, `multiclass_roc`, `average_precision`, `precision_recall_curve`, `multiclass_precision_recall_curve` * from `pytorch_lightning.metrics.functional.reduction` removed `reduce`, `class_reduce` - Removed deprecated `ModelCheckpoint` arguments `prefix`, `mode="auto"` ([#6162](https://github.com/PyTorchLightning/pytorch-lightning/pull/6162)) - Removed `mode='auto'` from `EarlyStopping` ([#6167](https://github.com/PyTorchLightning/pytorch-lightning/pull/6167)) - Removed legacy references for magic keys in the `Result` object ([#6016](https://github.com/PyTorchLightning/pytorch-lightning/pull/6016)) - Removed deprecated `LightningModule` `hparams` setter ([#6207](https://github.com/PyTorchLightning/pytorch-lightning/pull/6207)) - Removed legacy code to log or include metrics in the progress bar by returning them in a dict with the `"log"/"progress_bar"` magic keys. Use `self.log` instead ([#6734](https://github.com/PyTorchLightning/pytorch-lightning/pull/6734)) - Removed `optimizer_idx` argument from `training_step` in manual optimization ([#6093](https://github.com/PyTorchLightning/pytorch-lightning/pull/6093)) ### Fixed - Set better defaults for `rank_zero_only.rank` when training is launched with SLURM and torchelastic ([#6802](https://github.com/PyTorchLightning/pytorch-lightning/pull/6802/)) - Made the `Plugin.reduce` method more consistent across all Plugins to reflect a mean-reduction by default ([#6011](https://github.com/PyTorchLightning/pytorch-lightning/pull/6011)) - Move lightning module to correct device type when using LightningDistributedWrapper ([#6070](https://github.com/PyTorchLightning/pytorch-lightning/pull/6070)) - Do not print top-k verbose log with `ModelCheckpoint(monitor=None)` ([#6109](https://github.com/PyTorchLightning/pytorch-lightning/pull/6109)) - Fixed csv extension check ([#6436](https://github.com/PyTorchLightning/pytorch-lightning/pull/6436)) - Fixed `ModelCheckpoint(monitor=None, save_last=True)` not saving checkpoints ([#6136](https://github.com/PyTorchLightning/pytorch-lightning/pull/6136)) - Fixed `ModelCheckpoint(save_top_k=0, save_last=True)` not saving the `last` checkpoint ([#6136](https://github.com/PyTorchLightning/pytorch-lightning/pull/6136)) - Fixed `.teardown(stage='fit')` getting called during `trainer.test` ([#6386](https://github.com/PyTorchLightning/pytorch-lightning/pull/6386)) - Fixed `.on_fit_{start,end}()` getting called during `trainer.test` ([#6386](https://github.com/PyTorchLightning/pytorch-lightning/pull/6386)) - Fixed LightningModule `all_gather` on cpu tensors ([#6416](https://github.com/PyTorchLightning/pytorch-lightning/pull/6416)) - Fixed torch distributed not available in setup hook for DDP ([#6506](https://github.com/PyTorchLightning/pytorch-lightning/pull/6506)) - Fixed `EarlyStopping` logic when `min_epochs` or `min_steps` requirement is not met ([#6705](https://github.com/PyTorchLightning/pytorch-lightning/pull/6705)) ## [1.2.7] - 2021-04-06 ### Fixed - Fixed resolve a bug with omegaconf and xm.save ([#6741](https://github.com/PyTorchLightning/pytorch-lightning/pull/6741)) - Fixed an issue with IterableDataset when __len__ is not defined ([#6828](https://github.com/PyTorchLightning/pytorch-lightning/pull/6828)) - Sanitize None params during pruning ([#6836](https://github.com/PyTorchLightning/pytorch-lightning/pull/6836)) - Enforce an epoch scheduler interval when using SWA ([#6588](https://github.com/PyTorchLightning/pytorch-lightning/pull/6588)) - Fixed TPU Colab hang issue, post training ([#6816](https://github.com/PyTorchLightning/pytorch-lightning/pull/6816)) - Fixed a bug where `TensorBoardLogger` would give a warning and not log correctly to a symbolic link `save_dir` ([#6730](https://github.com/PyTorchLightning/pytorch-lightning/pull/6730)) ## [1.2.6] - 2021-03-30 ### Changed - Changed the behavior of `on_epoch_start` to run at the beginning of validation & test epoch ([#6498](https://github.com/PyTorchLightning/pytorch-lightning/pull/6498)) ### Removed - Removed legacy code to include `step` dictionary returns in `callback_metrics`. Use `self.log_dict` instead. ([#6682](https://github.com/PyTorchLightning/pytorch-lightning/pull/6682)) ### Fixed - Fixed `DummyLogger.log_hyperparams` raising a `TypeError` when running with `fast_dev_run=True` ([#6398](https://github.com/PyTorchLightning/pytorch-lightning/pull/6398)) - Fixed error on TPUs when there was no `ModelCheckpoint` ([#6654](https://github.com/PyTorchLightning/pytorch-lightning/pull/6654)) - Fixed `trainer.test` freeze on TPUs ([#6654](https://github.com/PyTorchLightning/pytorch-lightning/pull/6654)) - Fixed a bug where gradients were disabled after calling `Trainer.predict` ([#6657](https://github.com/PyTorchLightning/pytorch-lightning/pull/6657)) - Fixed bug where no TPUs were detected in a TPU pod env ([#6719](https://github.com/PyTorchLightning/pytorch-lightning/pull/6719)) ## [1.2.5] - 2021-03-23 ### Changed - Update Gradient Clipping for the TPU Accelerator ([#6576](https://github.com/PyTorchLightning/pytorch-lightning/pull/6576)) - Refactored setup for typing friendly ([#6590](https://github.com/PyTorchLightning/pytorch-lightning/pull/6590)) ### Fixed - Fixed a bug where `all_gather` would not work correctly with `tpu_cores=8` ([#6587](https://github.com/PyTorchLightning/pytorch-lightning/pull/6587)) - Fixed comparing required versions ([#6434](https://github.com/PyTorchLightning/pytorch-lightning/pull/6434)) - Fixed duplicate logs appearing in console when using the python logging module ([#6275](https://github.com/PyTorchLightning/pytorch-lightning/pull/6275)) - Added Autocast in validation, test and predict modes for Native AMP ([#6565](https://github.com/PyTorchLightning/pytorch-lightning/pull/6565)) Reviewed By: shuyingsunshine21 Differential Revision: D27528929 fbshipit-source-id: 311c88f71461c2c79bbf185e28d7a6d683ccc26f
Showing
Please register or sign in to comment