lightning_train_net.py 8.16 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import logging
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Type

import pytorch_lightning as pl  # type: ignore
from d2go.config import CfgNode, temp_defrost
from d2go.runner import get_class
from d2go.runner.lightning_task import GeneralizedRCNNTask
from d2go.setup import basic_argument_parser
from d2go.utils.misc import dump_trained_model_configs
from detectron2.utils.events import EventStorage
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from stl.lightning.callbacks.model_checkpoint import ModelCheckpoint
from stl.lightning.callbacks.quantization import QuantizationAwareTraining
from stl.lightning.io.filesystem import get_filesystem
from stl.lightning.loggers import ManifoldTensorBoardLogger
from stl.lightning.utilities.manifold import manifold_uri_to_bucket_and_path
from torch.distributed import get_rank


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("detectron2go.lightning.train_net")

FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}"


@dataclass
class TrainOutput:
    output_dir: str
    accuracy: Optional[Dict[str, Any]] = None
    tensorboard_log_dir: Optional[str] = None
    model_configs: Optional[Dict[str, str]] = None


def get_tb_logger(output_dir: str) -> TensorBoardLogger:
    """Stores tensorboard outputs in output_dir."""
    if output_dir.startswith("manifold://"):
        bucket, path = manifold_uri_to_bucket_and_path(output_dir)
        return ManifoldTensorBoardLogger(manifold_bucket=bucket, manifold_path=path)
    return TensorBoardLogger(save_dir=output_dir)


def maybe_override_output_dir(cfg: CfgNode, output_dir: Optional[str]) -> None:
    if output_dir is not None and output_dir != cfg.OUTPUT_DIR:
        cfg.OUTPUT_DIR = output_dir
        logger.warning(
            f"Override cfg.OUTPUT_DIR ({cfg.OUTPUT_DIR}) to be the same as "
            f"output_dir {output_dir}"
        )


def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]:
    """Gets the trainer callbacks based on the given D2Go Config.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.

    Returns:
        A list of configured Callbacks to be used by the Lightning Traininer.
    """
    callbacks: List[Callback] = [
        LearningRateMonitor(logging_interval="step"),
        ModelCheckpoint(
            directory=cfg.OUTPUT_DIR,
            has_user_data=False,
            save_top_k=-1,
            every_n_epochs=-1,
            every_n_steps=cfg.SOLVER.CHECKPOINT_PERIOD,
            file_name_template="{step}",
            save_last=True,
        ),
    ]
    if cfg.QUANTIZATION.QAT.ENABLED:
        qat = cfg.QUANTIZATION.QAT
        callbacks.append(
            QuantizationAwareTraining(
                qconfig_dicts={
                    submodule: None for submodule in cfg.QUANTIZATION.MODULES
                }
                if cfg.QUANTIZATION.MODULES
                else None,
                start_step=qat.START_ITER,
                enable_observer=(qat.ENABLE_OBSERVER_ITER, qat.DISABLE_OBSERVER_ITER),
                freeze_bn_step=qat.FREEZE_BN_ITER,
            )
        )
    return callbacks


def main(
    cfg: CfgNode,
    output_dir: Optional[str] = None,
    task_cls: Type[GeneralizedRCNNTask] = GeneralizedRCNNTask,
    eval_only: bool = False,
    num_machines: int = 1,
    num_gpus: int = 0,
    num_processes: int = 1,
    accelerator: Optional[str] = "ddp",
) -> TrainOutput:
    """Main function for launching a training with lightning trainer
    Args:
        cfg: D2go config node
        num_machines: Number of nodes used for distributed training
        num_gpus: Number of GPUs to train on each node
        num_processes: Number of processes on each node.
            NOTE: Automatically set to the number of GPUs when using DDP.
            Set a value greater than 1 to mimic distributed training on CPUs.
        accelerator: Backend for distributed training. Only DDP
            and DPP_CPU are supported.
        eval_only: True if run evaluation only.
    """
    assert (
        num_processes == 1 or num_gpus == 0
    ), "Only set num_processes > 1 when training on CPUs"

    maybe_override_output_dir(cfg, output_dir)

    if cfg.MODEL.WEIGHTS:
        # only load model weights from checkpoint
        task = task_cls.load_from_checkpoint(cfg.MODEL.WEIGHTS, cfg=cfg)
        logger.info(f"Load model weights from checkpoint: {cfg.MODEL.WEIGHTS}.")
    else:
        task = task_cls(cfg)

    tb_logger = get_tb_logger(cfg.OUTPUT_DIR)
    trainer_params = {
        # training loop is bounded by max steps, use a large max_epochs to make
        # sure max_steps is met first
        "max_epochs": 10 ** 8,
        "max_steps": cfg.SOLVER.MAX_ITER,
        "val_check_interval": cfg.TEST.EVAL_PERIOD
        if cfg.TEST.EVAL_PERIOD > 0
        else cfg.SOLVER.MAX_ITER,
        "num_nodes": num_machines,
        "gpus": num_gpus,
        "num_processes": num_processes,
        "accelerator": accelerator,
        "callbacks": _get_trainer_callbacks(cfg),
        "logger": tb_logger,
        "num_sanity_val_steps": 0,
        "progress_bar_refresh_rate": 10,
    }

    last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt")
    if get_filesystem(cfg.OUTPUT_DIR).exists(last_checkpoint):
        # resume training from checkpoint
        trainer_params["resume_from_checkpoint"] = last_checkpoint
        logger.info(f"Resuming training from checkpoint: {last_checkpoint}.")

    # pyre-fixme[16]: Module `pl` has no attribute `Trainer`.
    trainer = pl.Trainer(**trainer_params)
    # TODO: find a better place for event storage
    with EventStorage() as storage:
        task.storage = storage
        model_configs = None
        if eval_only:
            logger.info(
                f"start to evaluate with {num_machines} nodes and {num_gpus} GPUs"
            )
            trainer.test(task)
        else:
            logger.info(f"start to train with {num_machines} nodes and {num_gpus} GPUs")
            trainer.fit(task)
            final_ckpt = os.path.join(cfg.OUTPUT_DIR, FINAL_MODEL_CKPT)
            trainer.save_checkpoint(final_ckpt) # for validation monitor

            trained_cfg = cfg.clone()
            with temp_defrost(trained_cfg):
                trained_cfg.MODEL.WEIGHTS = final_ckpt
            model_configs = dump_trained_model_configs(cfg.OUTPUT_DIR, {"model_final": trained_cfg})

    tb_log_dir = (
        tb_logger.output_dir
        if isinstance(tb_logger, ManifoldTensorBoardLogger)
        else tb_logger.log_dir
    )
    return TrainOutput(
        output_dir=cfg.OUTPUT_DIR,
        tensorboard_log_dir=tb_log_dir,
        accuracy=task.eval_res,
        model_configs=model_configs
    )


def build_config(
    config_file: str,
    task_cls: Type[GeneralizedRCNNTask],
    opts: Optional[List[str]] = None,
) -> CfgNode:
    """Build config node from config file
    Args:
        config_file: Path to a D2go config file
        output_dir: When given, this will override the OUTPUT_DIR in the config
        opts: A list of config overrides. e.g. ["SOLVER.IMS_PER_BATCH", "2"]
    """
    cfg = task_cls.get_default_cfg()
    cfg.merge_from_file(config_file)

    if opts:
        cfg.merge_from_list(opts)
    return cfg


def argument_parser():
    parser = basic_argument_parser(distributed=True, requires_output_dir=False)
    parser.add_argument(
        "--num-gpus", type=int, default=0, help="number of GPUs per machine"
    )
    return parser


if __name__ == "__main__":
    args = argument_parser().parse_args()
    task_cls = get_class(args.runner) if args.runner else GeneralizedRCNNTask
    cfg = build_config(args.config_file, task_cls, args.opts)
    ret = main(
        cfg,
        args.output_dir,
        task_cls,
        eval_only=False,  # eval_only
        num_machines=args.num_machines,
        num_gpus=args.num_gpus,
        num_processes=args.num_processes,
        accelerator="ddp" if args.num_gpus > 0 else "ddp_cpu",
    )
    if get_rank() == 0:
        print(ret)