test_runner_default_runner.py 13.1 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import os
import tempfile
import unittest

import d2go.runner.default_runner as default_runner
import torch
from detectron2.evaluation import COCOEvaluator, RotatedCOCOEvaluator
from detectron2.modeling import META_ARCH_REGISTRY
from detectron2.structures import Boxes, ImageList, Instances
from mobile_cv.arch.quantization.qconfig import (
    updateable_symmetric_moving_avg_minmax_config,
)
from torch.nn.parallel import DistributedDataParallel

from d2go.tests import helper
from d2go.tests.data_loader_helper import create_local_dataset


@META_ARCH_REGISTRY.register()
class MetaArchForTest(torch.nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1)
        self.bn = torch.nn.BatchNorm2d(4)
        self.relu = torch.nn.ReLU(inplace=True)
        self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1))

    @property
    def device(self):
        return self.conv.weight.device

    def forward(self, inputs):
        if not self.training:
            return self.inference(inputs)

        images = [x["image"] for x in inputs]
        images = ImageList.from_tensors(images, 1)
        ret = self.conv(images.tensor)
        ret = self.bn(ret)
        ret = self.relu(ret)
        ret = self.avgpool(ret)
        return {"loss": ret.norm()}

    def inference(self, inputs):
        instance = Instances((10, 10))
        instance.pred_boxes = Boxes(torch.tensor([[2.5, 2.5, 7.5, 7.5]]))
        instance.scores = torch.tensor([0.9])
        instance.pred_classes = torch.tensor([1], dtype=torch.int32)
        ret = [{"instances": instance}]
        return ret


@META_ARCH_REGISTRY.register()
class MetaArchForTestSingleValue(torch.nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.scale_weight = torch.nn.Parameter(torch.Tensor([1.0]))

    @property
    def device(self):
        return self.scale_weight.device

    def forward(self, inputs):
        if not self.training:
            return self.inference(inputs)

        ret = {"loss": self.scale_weight.norm() * 10.0}
        print(self.scale_weight)
        print(ret)
        return ret

    def inference(self, inputs):
        instance = Instances((10, 10))
        instance.pred_boxes = Boxes(
            torch.tensor([[2.5, 2.5, 7.5, 7.5]], device=self.device) * self.scale_weight
        )
        instance.scores = torch.tensor([0.9])
        instance.pred_classes = torch.tensor([1], dtype=torch.int32)
        ret = [{"instances": instance}]
        return ret


def _get_cfg(runner, output_dir, dataset_name):
    cfg = runner.get_default_cfg()
    cfg.MODEL.DEVICE = "cpu"
    cfg.MODEL.META_ARCHITECTURE = "MetaArchForTest"

    cfg.DATASETS.TRAIN = (dataset_name,)
    cfg.DATASETS.TEST = (dataset_name,)

    cfg.INPUT.MIN_SIZE_TRAIN = (10,)
    cfg.INPUT.MIN_SIZE_TEST = (10,)

    cfg.SOLVER.MAX_ITER = 5
    cfg.SOLVER.STEPS = []
    cfg.SOLVER.WARMUP_ITERS = 1
    cfg.SOLVER.CHECKPOINT_PERIOD = 1
    cfg.SOLVER.IMS_PER_BATCH = 2

    cfg.OUTPUT_DIR = output_dir

    return cfg


class TestDefaultRunner(unittest.TestCase):
    def test_d2go_runner_build_model(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            ds_name = create_local_dataset(tmp_dir, 5, 10, 10)
            runner = default_runner.Detectron2GoRunner()
            cfg = _get_cfg(runner, tmp_dir, ds_name)

            model = runner.build_model(cfg)
            dl = runner.build_detection_train_loader(cfg)
            batch = next(iter(dl))
            output = model(batch)
            self.assertIsInstance(output, dict)

            model.eval()
            output = model(batch)
            self.assertIsInstance(output, list)
            default_runner._close_all_tbx_writers()

    def test_d2go_runner_train(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            ds_name = create_local_dataset(tmp_dir, 5, 10, 10)
            runner = default_runner.Detectron2GoRunner()
            cfg = _get_cfg(runner, tmp_dir, ds_name)

            model = runner.build_model(cfg)
            runner.do_train(cfg, model, resume=True)
            final_model_path = os.path.join(tmp_dir, "model_final.pth")
            self.assertTrue(os.path.isfile(final_model_path))
            default_runner._close_all_tbx_writers()

    def test_d2go_runner_test(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            ds_name = create_local_dataset(tmp_dir, 5, 10, 10)
            runner = default_runner.Detectron2GoRunner()
            cfg = _get_cfg(runner, tmp_dir, ds_name)

            model = runner.build_model(cfg)
            results = runner.do_test(cfg, model)
            self.assertEqual(results["default"][ds_name]["bbox"]["AP"], 10.0)
            default_runner._close_all_tbx_writers()

    def test_d2go_build_evaluator(self):
        for rotated, evaluator in [
            (True, RotatedCOCOEvaluator),
            (False, COCOEvaluator),
        ]:
            with tempfile.TemporaryDirectory() as tmp_dir:
                ds_name = create_local_dataset(tmp_dir, 5, 10, 10, is_rotated=rotated)
                runner = default_runner.Detectron2GoRunner()
                cfg = _get_cfg(runner, tmp_dir, ds_name)

                ds_evaluators = runner.get_evaluator(cfg, ds_name, tmp_dir)
                self.assertTrue(isinstance(ds_evaluators._evaluators[0], evaluator))

    @helper.enable_ddp_env
    def test_d2go_runner_ema(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            ds_name = create_local_dataset(tmp_dir, 5, 10, 10)
            runner = default_runner.Detectron2GoRunner()
            cfg = _get_cfg(runner, tmp_dir, ds_name)
            cfg.MODEL.META_ARCHITECTURE = "MetaArchForTestSingleValue"
            cfg.MODEL_EMA.ENABLED = True
            cfg.MODEL_EMA.DECAY = 0.9

            def _run_train(cfg):
                cfg = copy.deepcopy(cfg)
                model = runner.build_model(cfg)
                model = DistributedDataParallel(model, broadcast_buffers=False)
                runner.do_train(cfg, model, True)
                final_model_path = os.path.join(tmp_dir, "model_final.pth")
                trained_weights = torch.load(final_model_path)
                self.assertIn("ema_state", trained_weights)
                default_runner._close_all_tbx_writers()
                return final_model_path, model.module.ema_state

            def _run_test(cfg, final_path, gt_ema):
                cfg = copy.deepcopy(cfg)
                cfg.MODEL.WEIGHTS = final_path
                model = runner.build_model(cfg, eval_only=True)
                self.assertGreater(len(model.ema_state.state), 0)
                self.assertEqual(len(model.ema_state.state), len(gt_ema.state))
                self.assertTrue(
                    _compare_state_dict(
                        model.ema_state.state_dict(), gt_ema.state_dict()
                    )
                )
                results = runner.do_test(cfg, model)
                self.assertEqual(results["default"][ds_name]["bbox"]["AP"], 3.0)
                self.assertEqual(results["ema"][ds_name]["bbox"]["AP"], 9.0)
                default_runner._close_all_tbx_writers()

            def _run_build_model_with_ema_weight(cfg, final_path, gt_ema):
                cfg = copy.deepcopy(cfg)
                cfg.MODEL.WEIGHTS = final_path
                cfg.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY = True
                model = runner.build_model(cfg, eval_only=True)
                self.assertTrue(
                    _compare_state_dict(model.state_dict(), gt_ema.state_dict())
                )

            final_model_path, gt_ema = _run_train(cfg)
            _run_test(cfg, final_model_path, gt_ema)
            _run_build_model_with_ema_weight(cfg, final_model_path, gt_ema)

    def test_d2go_runner_train_qat_hook_update_stat(self):
        """Check that the qat hook is used and updates stats"""

        @META_ARCH_REGISTRY.register()
        class MetaArchForTestQAT(MetaArchForTest):
            def prepare_for_quant(self, cfg):
                """Set the qconfig to updateable observers"""
                self.qconfig = updateable_symmetric_moving_avg_minmax_config
                return self

        def setup(tmp_dir):
            ds_name = create_local_dataset(tmp_dir, 5, 10, 10)
            runner = default_runner.Detectron2GoRunner()
            cfg = _get_cfg(runner, tmp_dir, ds_name)
            cfg.merge_from_list(
                (
                    ["MODEL.META_ARCHITECTURE", "MetaArchForTestQAT"]
                    + ["QUANTIZATION.QAT.ENABLED", "True"]
                    + ["QUANTIZATION.QAT.START_ITER", "0"]
                    + ["QUANTIZATION.QAT.ENABLE_OBSERVER_ITER", "0"]
                )
            )
            return runner, cfg

        # check observers have not changed their minmax vals (stats changed)
        with tempfile.TemporaryDirectory() as tmp_dir:
            runner, cfg = setup(tmp_dir)
            model = runner.build_model(cfg)
            runner.do_train(cfg, model, resume=True)
            observer = model.conv.activation_post_process.activation_post_process
            self.assertEqual(observer.min_val, torch.tensor(float("inf")))
            self.assertEqual(observer.max_val, torch.tensor(float("-inf")))
            self.assertNotEqual(observer.max_stat, torch.tensor(float("inf")))

        # check observer does not change if period is > max_iter
        with tempfile.TemporaryDirectory() as tmp_dir:
            runner, cfg = setup(tmp_dir)
            cfg.merge_from_list(
                (
                    ["QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIODICALLY", "True"]
                    + ["QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIOD", "10"]
                )
            )
            model = runner.build_model(cfg)
            runner.do_train(cfg, model, resume=True)
            observer = model.conv.activation_post_process.activation_post_process
            self.assertEqual(observer.min_val, torch.tensor(float("inf")))
            self.assertEqual(observer.max_val, torch.tensor(float("-inf")))
            self.assertNotEqual(observer.max_stat, torch.tensor(float("inf")))

        # check observer changes if period < max_iter
        with tempfile.TemporaryDirectory() as tmp_dir:
            runner, cfg = setup(tmp_dir)
            cfg.merge_from_list(
                (
                    ["QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIODICALLY", "True"]
                    + ["QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIOD", "1"]
                )
            )
            model = runner.build_model(cfg)
            runner.do_train(cfg, model, resume=True)
            observer = model.conv.activation_post_process.activation_post_process
            self.assertNotEqual(observer.min_val, torch.tensor(float("inf")))
            self.assertNotEqual(observer.max_val, torch.tensor(float("-inf")))
            self.assertNotEqual(observer.max_stat, torch.tensor(float("inf")))

        default_runner._close_all_tbx_writers()

    def test_d2go_runner_train_qat(self):
        """Make sure QAT runs"""

        @META_ARCH_REGISTRY.register()
        class MetaArchForTestQAT1(torch.nn.Module):
            def __init__(self, cfg):
                super().__init__()
                self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1)

            @property
            def device(self):
                return self.conv.weight.device

            def forward(self, inputs):
                images = [x["image"] for x in inputs]
                images = ImageList.from_tensors(images, 1)

                ret = self.conv(images.tensor)
                losses = {"loss": ret.norm()}

                # run the same conv again
                ret1 = self.conv(images.tensor)
                losses["ret1"] = ret1.norm()

                return losses

        def setup(tmp_dir, backend):
            ds_name = create_local_dataset(tmp_dir, 5, 10, 10)
            runner = default_runner.Detectron2GoRunner()
            cfg = _get_cfg(runner, tmp_dir, ds_name)
            cfg.merge_from_list(
                (
                    ["MODEL.META_ARCHITECTURE", "MetaArchForTestQAT1"]
                    + ["QUANTIZATION.QAT.ENABLED", "True"]
                    + ["QUANTIZATION.QAT.START_ITER", "0"]
                    + ["QUANTIZATION.QAT.ENABLE_OBSERVER_ITER", "0"]
                    + ["QUANTIZATION.BACKEND", backend]
                )
            )
            return runner, cfg

        for backend in ["fbgemm", "qnnpack"]:
            with tempfile.TemporaryDirectory() as tmp_dir:
                runner, cfg = setup(tmp_dir, backend=backend)
                model = runner.build_model(cfg)
                runner.do_train(cfg, model, resume=True)

            default_runner._close_all_tbx_writers()

def _compare_state_dict(sd1, sd2, abs_error=1e-3):
    if len(sd1) != len(sd2):
        return False
    if set(sd1.keys()) != set(sd2.keys()):
        return False
    for name in sd1:
        if sd1[name].dtype == torch.float32:
            if torch.abs((sd1[name] - sd2[name])).max() > abs_error:
                return False
        elif (sd1[name] != sd2[name]).any():
            return False
    return True