test_modeling_model_ema.py 5.84 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import itertools
import unittest

import torch
from d2go.modeling import model_ema
import d2go.runner.default_runner as default_runner

from d2go.tests import helper


class TestArch(torch.nn.Module):
    def __init__(self, value=None, int_value=None):
        super().__init__()
        self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1)
        self.bn = torch.nn.BatchNorm2d(4)
        self.relu = torch.nn.ReLU(inplace=True)
        self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1))
        if value is not None:
            self.set_const_weights(value, int_value)

    def forward(self, x):
        ret = self.conv(x)
        ret = self.bn(ret)
        ret = self.relu(ret)
        ret = self.avgpool(ret)
        return ret

    def set_const_weights(self, value, int_value=None):
        if int_value is None:
            int_value = int(value)
        for x in itertools.chain(self.parameters(), self.buffers()):
            if x.dtype == torch.float32:
                x.data.fill_(value)
            else:
                x.data.fill_(int_value)


def _compare_state_dict(model1, model2, abs_error=1e-3):
    sd1 = model1.state_dict()
    sd2 = model2.state_dict()
    if len(sd1) != len(sd2):
        return False
    if set(sd1.keys()) != set(sd2.keys()):
        return False
    for name in sd1:
        if sd1[name].dtype == torch.float32:
            if torch.abs((sd1[name] - sd2[name])).max() > abs_error:
                return False
        elif (sd1[name] != sd2[name]).any():
            return False
    return True


class TestModelingModelEMA(unittest.TestCase):
    def test_emastate(self):
        model = TestArch()
        state = model_ema.EMAState.FromModel(model)
        # two for conv (conv.weight, conv.bias),
        # five for bn (bn.weight, bn.bias, bn.running_mean, bn.running_var, bn.num_batches_tracked)
        self.assertEqual(len(state.state), 7)

        for _, val in state.state.items():
            self.assertFalse(val.requires_grad)

        model1 = TestArch()
        self.assertFalse(_compare_state_dict(model, model1))

        state.apply_to(model1)
        self.assertTrue(_compare_state_dict(model, model1))

    def test_emastate_saveload(self):
        model = TestArch()
        state = model_ema.EMAState.FromModel(model)

        model1 = TestArch()
        self.assertFalse(_compare_state_dict(model, model1))

        state1 = model_ema.EMAState()
        state1.load_state_dict(state.state_dict())
        state1.apply_to(model1)
        self.assertTrue(_compare_state_dict(model, model1))

    @helper.skip_if_no_gpu
    def test_emastate_crossdevice(self):
        model = TestArch()
        model.cuda()
        # state on gpu
        state = model_ema.EMAState.FromModel(model)
        self.assertEqual(state.device, torch.device("cuda:0"))
        # target model on cpu
        model1 = TestArch()
        state.apply_to(model1)
        self.assertEqual(next(model1.parameters()).device, torch.device("cpu"))
        self.assertTrue(_compare_state_dict(copy.deepcopy(model).cpu(), model1))

        # state on cpu
        state1 = model_ema.EMAState.FromModel(model, device="cpu")
        self.assertEqual(state1.device, torch.device("cpu"))
        # target model on gpu
        model2 = TestArch()
        model2.cuda()
        state1.apply_to(model2)
        self.assertEqual(next(model2.parameters()).device, torch.device("cuda:0"))
        self.assertTrue(_compare_state_dict(model, model2))

    def test_ema_updater(self):
        model = TestArch()
        state = model_ema.EMAState()

        updated_model = TestArch()

        updater = model_ema.EMAUpdater(state, decay=0.0)
        updater.init_state(model)
        for _ in range(3):
            cur = TestArch()
            updater.update(cur)
            state.apply_to(updated_model)
            # weight decay == 0.0, always use new model
            self.assertTrue(_compare_state_dict(updated_model, cur))

        updater = model_ema.EMAUpdater(state, decay=1.0)
        updater.init_state(model)
        for _ in range(3):
            cur = TestArch()
            updater.update(cur)
            state.apply_to(updated_model)
            # weight decay == 1.0, always use init model
            self.assertTrue(_compare_state_dict(updated_model, model))

    def test_ema_updater_decay(self):
        state = model_ema.EMAState()

        updater = model_ema.EMAUpdater(state, decay=0.7)
        updater.init_state(TestArch(1.0))
        gt_val = 1.0
        gt_val_int = 1
        for idx in range(3):
            updater.update(TestArch(float(idx)))
            updated_model = state.get_ema_model(TestArch())
            gt_val = gt_val * 0.7 + float(idx) * 0.3
            gt_val_int = int(gt_val_int * 0.7 + float(idx) * 0.3)
            self.assertTrue(
                _compare_state_dict(updated_model, TestArch(gt_val, gt_val_int))
            )


class TestModelingModelEMAHook(unittest.TestCase):
    def test_ema_hook(self):
        runner = default_runner.Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.MODEL.DEVICE = "cpu"
        cfg.MODEL_EMA.ENABLED = True
        # use new model weights
        cfg.MODEL_EMA.DECAY = 0.0

        model = TestArch()
        model_ema.may_build_model_ema(cfg, model)
        self.assertTrue(hasattr(model, "ema_state"))

        ema_hook = model_ema.EMAHook(cfg, model)
        ema_hook.before_train()
        ema_hook.before_step()
        model.set_const_weights(2.0)
        ema_hook.after_step()
        ema_hook.after_train()

        ema_checkpointers = model_ema.may_get_ema_checkpointer(cfg, model)
        self.assertEqual(len(ema_checkpointers), 1)

        out_model = TestArch()
        ema_checkpointers["ema_state"].apply_to(out_model)
        self.assertTrue(
            _compare_state_dict(out_model, model)
        )