"vscode:/vscode.git/clone" did not exist on "3773fb646521b474d5a869d79f932a2484eb674c"
test_all.py 8.71 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import io
import unittest

import torch
from torch import nn, Tensor
from typing import List

from detr.models.matcher import HungarianMatcher
from detr.models.position_encoding import PositionEmbeddingSine, PositionEmbeddingLearned
from detr.models.backbone import Backbone
from detr.util import box_ops
from detr.util.misc import nested_tensor_from_tensor_list
from detr.hub import detr_resnet50, detr_resnet50_panoptic

# onnxruntime requires python 3.5 or above
try:
    import onnxruntime
except ImportError:
    onnxruntime = None


class Tester(unittest.TestCase):

    def test_box_cxcywh_to_xyxy(self):
        t = torch.rand(10, 4)
        r = box_ops.box_xyxy_to_cxcywh(box_ops.box_cxcywh_to_xyxy(t))
        self.assertLess((t - r).abs().max(), 1e-5)

    @staticmethod
    def indices_torch2python(indices):
        return [(i.tolist(), j.tolist()) for i, j in indices]

    def test_hungarian(self):
        n_queries, n_targets, n_classes = 100, 15, 91
        logits = torch.rand(1, n_queries, n_classes + 1)
        boxes = torch.rand(1, n_queries, 4)
        tgt_labels = torch.randint(high=n_classes, size=(n_targets,))
        tgt_boxes = torch.rand(n_targets, 4)
        matcher = HungarianMatcher()
        targets = [{'labels': tgt_labels, 'boxes': tgt_boxes}]
        indices_single = matcher({'pred_logits': logits, 'pred_boxes': boxes}, targets)
        indices_batched = matcher({'pred_logits': logits.repeat(2, 1, 1),
                                   'pred_boxes': boxes.repeat(2, 1, 1)}, targets * 2)
        self.assertEqual(len(indices_single[0][0]), n_targets)
        self.assertEqual(len(indices_single[0][1]), n_targets)
        self.assertEqual(self.indices_torch2python(indices_single),
                         self.indices_torch2python([indices_batched[0]]))
        self.assertEqual(self.indices_torch2python(indices_single),
                         self.indices_torch2python([indices_batched[1]]))

        # test with empty targets
        tgt_labels_empty = torch.randint(high=n_classes, size=(0,))
        tgt_boxes_empty = torch.rand(0, 4)
        targets_empty = [{'labels': tgt_labels_empty, 'boxes': tgt_boxes_empty}]
        indices = matcher({'pred_logits': logits.repeat(2, 1, 1),
                           'pred_boxes': boxes.repeat(2, 1, 1)}, targets + targets_empty)
        self.assertEqual(len(indices[1][0]), 0)
        indices = matcher({'pred_logits': logits.repeat(2, 1, 1),
                           'pred_boxes': boxes.repeat(2, 1, 1)}, targets_empty * 2)
        self.assertEqual(len(indices[0][0]), 0)

    def test_position_encoding_script(self):
        m1, m2 = PositionEmbeddingSine(), PositionEmbeddingLearned()
        mm1, mm2 = torch.jit.script(m1), torch.jit.script(m2)  # noqa

    def test_backbone_script(self):
        backbone = Backbone('resnet50', True, False, False)
        torch.jit.script(backbone)  # noqa

    def test_model_script_detection(self):
        model = detr_resnet50(pretrained=False).eval()
        scripted_model = torch.jit.script(model)
        x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)])
        out = model(x)
        out_script = scripted_model(x)
        self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
        self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))

    def test_model_script_panoptic(self):
        model = detr_resnet50_panoptic(pretrained=False).eval()
        scripted_model = torch.jit.script(model)
        x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)])
        out = model(x)
        out_script = scripted_model(x)
        self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
        self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))
        self.assertTrue(out["pred_masks"].equal(out_script["pred_masks"]))

    def test_model_detection_different_inputs(self):
        model = detr_resnet50(pretrained=False).eval()
        # support NestedTensor
        x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)])
        out = model(x)
        self.assertIn('pred_logits', out)
        # and 4d Tensor
        x = torch.rand(1, 3, 200, 200)
        out = model(x)
        self.assertIn('pred_logits', out)
        # and List[Tensor[C, H, W]]
        x = torch.rand(3, 200, 200)
        out = model([x])
        self.assertIn('pred_logits', out)

    def test_warpped_model_script_detection(self):
        class WrappedDETR(nn.Module):
            def __init__(self, model):
                super().__init__()
                self.model = model

            def forward(self, inputs: List[Tensor]):
                sample = nested_tensor_from_tensor_list(inputs)
                return self.model(sample)

        model = detr_resnet50(pretrained=False)
        wrapped_model = WrappedDETR(model)
        wrapped_model.eval()
        scripted_model = torch.jit.script(wrapped_model)
        x = [torch.rand(3, 200, 200), torch.rand(3, 200, 250)]
        out = wrapped_model(x)
        out_script = scripted_model(x)
        self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
        self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

    def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None,
                  output_names=None, input_names=None):
        model.eval()

        onnx_io = io.BytesIO()
        # export to onnx with the first input
        torch.onnx.export(model, inputs_list[0], onnx_io,
                          do_constant_folding=do_constant_folding, opset_version=12,
                          dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names)
        # validate the exported model with onnx runtime
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or isinstance(test_inputs, list):
                    test_inputs = (nested_tensor_from_tensor_list(test_inputs),)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)

    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs)) #noqa: C402
        ort_outs = ort_session.run(None, ort_inputs)
        for i in range(0, len(outputs)):
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
                    self.assertIn("(0.00%)", str(error), str(error))
                else:
                    raise

    def test_model_onnx_detection(self):
        model = detr_resnet50(pretrained=False).eval()
        dummy_image = torch.ones(1, 3, 800, 800) * 0.3
        model(dummy_image)

        # Test exported model on images of different size, or dummy input
        self.run_model(
            model,
            [(torch.rand(1, 3, 750, 800),)],
            input_names=["inputs"],
            output_names=["pred_logits", "pred_boxes"],
            tolerate_small_mismatch=True,
        )

    @unittest.skip("CI doesn't have enough memory")
    def test_model_onnx_detection_panoptic(self):
        model = detr_resnet50_panoptic(pretrained=False).eval()
        dummy_image = torch.ones(1, 3, 800, 800) * 0.3
        model(dummy_image)

        # Test exported model on images of different size, or dummy input
        self.run_model(
            model,
            [(torch.rand(1, 3, 750, 800),)],
            input_names=["inputs"],
            output_names=["pred_logits", "pred_boxes", "pred_masks"],
            tolerate_small_mismatch=True,
        )


if __name__ == '__main__':
    unittest.main()