keypoint_rcnn_fbnetv3a_dsmask_C4.yaml 2.33 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
MODEL:
  META_ARCHITECTURE: "GeneralizedRCNN"
  KEYPOINT_ON: True
  MASK_ON: False
  # WEIGHTS: manifold://xiaoliangdai_model/tree/xiaoliangdai/20210126/faster_rcnn.ULfbyCBZtx/e2e_train/model_0179999.pth
  FBNET_V2:
    ARCH: "FBNetV3_A_dsmask"
    NORM: "naiveSyncBN"
    WIDTH_DIVISOR: 8
    SCALE_FACTOR: 0.75
  BACKBONE:
    NAME: FBNetV2C4Backbone
  ANCHOR_GENERATOR:
    # SIZES: [[32, 64, 128, 256, 512]]  # NOTE: for smaller resolution (320 < 512)
    SIZES: [[32, 64, 96, 128, 160]]  # NOTE: for smaller resolution (320 < 512)
  RPN:
    HEAD_NAME: FBNetV2RpnHead
    IN_FEATURES: ["trunk3"]
    # Default values are 12000/2000 for train and 6000/1000 for test. In FBNet
    # we use smaller numbers.  TODO: reduce proposals for test in .yaml directly.
    POST_NMS_TOPK_TEST: 30
    POST_NMS_TOPK_TRAIN: 1000
    PRE_NMS_TOPK_TEST: 6000
    PRE_NMS_TOPK_TRAIN: 4000
  ROI_HEADS:
    NUM_CLASSES: 1
    IN_FEATURES: ["trunk3"]
    NAME: StandardROIHeads
  ROI_BOX_HEAD:
    SMOOTH_L1_BETA: 0.5  # 1.0? Keypoint AP degrades (though box AP improves) when using plain L1 loss
    NAME: FBNetV2RoIBoxHead
    POOLER_RESOLUTION: 6
    NORM: "naiveSyncBN"
  ROI_MASK_HEAD:
    NAME: "FBNetV2RoIMaskHead"
    NUM_CONV: 0
    POOLER_RESOLUTION: 6
  ROI_KEYPOINT_HEAD:
    NAME: FBNetV2RoIKeypointHeadKPRCNNIRFPredictorNoUpscale
    POOLER_RESOLUTION: 6
    POOLER_SAMPLING_RATIO: 0
    POOLER_TYPE: ROIAlignV2
    # NUM_KEYPOINTS: 100
  PIXEL_MEAN: [103.53, 116.28, 123.675]
  PIXEL_STD: [57.375, 57.12, 58.395]
MODEL_EMA:
  ENABLED: True
  DECAY: 0.9998
DATASETS:
  TRAIN: ("keypoints_coco_2017_train",)
  TEST: ("keypoints_coco_2017_val",)
  # TRAIN: ("02-11-2020_999tasks", "17-11-2020_545tasks", "06-11-2020_623tasks", "30-10-2020_602tasks")
  # TEST: ("11-11-2020_387tasks",)
#DATALOADER:
  #NUM_WORKERS: 0
SOLVER:
  IMS_PER_BATCH: 32
  BASE_LR: 0.16
  STEPS: (60000, 80000)
  MAX_ITER: 450000
  LR_SCHEDULER_NAME: WarmupCosineLR
TEST:
  EVAL_PERIOD: 5000
  # KEYPOINT_OKS_SIGMAS: [0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025]
INPUT:
  MAX_SIZE_TEST: 448
  MAX_SIZE_TRAIN: 448
  MIN_SIZE_TEST: 224
  MIN_SIZE_TRAIN: (224,)
VERSION: 2
EXPORT_CAFFE2:
  USE_HEATMAP_MAX_KEYPOINT: True
#MODEL_EMA:
#  DECAY: 0.9998
#  DEVICE:
#  ENABLED: True
#  USE_EMA_WEIGHTS_FOR_EVAL_ONLY: True