exporter.py 3.63 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

"""
Binary to convert pytorch detectron2go model to a predictor, which contains model(s) in
deployable format (such as torchscript, caffe2, ...)
"""

import copy
import logging
import typing

import mobile_cv.lut.lib.pt.flops_utils as flops_utils
14
from d2go.config import temp_defrost
facebook-github-bot's avatar
facebook-github-bot committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from d2go.export.api import convert_and_export_predictor
from d2go.setup import (
    basic_argument_parser,
    prepare_for_launch,
    setup_after_launch,
)
from mobile_cv.common.misc.py import post_mortem_if_fail


logger = logging.getLogger("d2go.tools.export")


def main(
    cfg,
    output_dir,
    runner,
    # binary specific optional arguments
    predictor_types: typing.List[str],
    compare_accuracy: bool = False,
    skip_if_fail: bool = False,
):
    cfg = copy.deepcopy(cfg)
    setup_after_launch(cfg, output_dir, runner)

    with temp_defrost(cfg):
        cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
    model = runner.build_model(cfg, eval_only=True)

    # NOTE: train dataset is used to avoid leakage since the data might be used for
    # running calibration for quantization. test_loader is used to make sure it follows
    # the inference behaviour (augmentation will not be applied).
RangiLyu's avatar
RangiLyu committed
46
47
    datasets = cfg.DATASETS.TRAIN[0]
    data_loader = runner.build_detection_test_loader(cfg, datasets)
facebook-github-bot's avatar
facebook-github-bot committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    logger.info("Running the pytorch model and print FLOPS ...")
    first_batch = next(iter(data_loader))
    input_args = (first_batch,)
    flops_utils.print_model_flops(model, input_args)

    predictor_paths: typing.Dict[str, str] = {}
    for typ in predictor_types:
        # convert_and_export_predictor might alter the model, copy before calling it
        pytorch_model = copy.deepcopy(model)
        try:
            predictor_path = convert_and_export_predictor(
                cfg, pytorch_model, typ, output_dir, data_loader
            )
            logger.info(f"Predictor type {typ} has been exported to {predictor_path}")
            predictor_paths[typ] = predictor_path
        except Exception as e:
            logger.warning(f"Export {typ} predictor failed: {e}")
            if not skip_if_fail:
                raise e

    ret = {"predictor_paths": predictor_paths, "accuracy_comparison": {}}
    if compare_accuracy:
        raise NotImplementedError()
        # NOTE: dict for metrics of all exported models (and original pytorch model)
        # ret["accuracy_comparison"] = accuracy_comparison

    return ret


@post_mortem_if_fail()
def run_with_cmdline_args(args):
    cfg, output_dir, runner = prepare_for_launch(args)
    return main(
        cfg,
        output_dir,
        runner,
        # binary specific optional arguments
        predictor_types=args.predictor_types,
        compare_accuracy=args.compare_accuracy,
        skip_if_fail=args.skip_if_fail,
    )


def get_parser():
    parser = basic_argument_parser(distributed=False)
    parser.add_argument(
        "--predictor-types",
        type=str,
        nargs="+",
        help="List of strings specify the types of predictors to export",
    )
    parser.add_argument(
        "--compare-accuracy",
        action="store_true",
        help="If true, all exported models and the original pytorch model will be"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
104
        " evaluated on cfg.DATASETS.TEST",
facebook-github-bot's avatar
facebook-github-bot committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    )
    parser.add_argument(
        "--skip-if-fail",
        action="store_true",
        default=False,
        help="If set, suppress the exception for failed exporting and continue to"
        " export the next type of model",
    )
    return parser

def cli():
    run_with_cmdline_args(get_parser().parse_args())

if __name__ == "__main__":
    cli()