test_d2go_datasets.py 10 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

Sam Tsai's avatar
Sam Tsai committed
4
import copy
facebook-github-bot's avatar
facebook-github-bot committed
5
6
7
8
import json
import os
import unittest

Sam Tsai's avatar
Sam Tsai committed
9
import d2go.data.extended_coco as extended_coco
Sam Tsai's avatar
Sam Tsai committed
10
11
12
13
14
from d2go.data.keypoint_metadata_registry import (
    KEYPOINT_METADATA_REGISTRY,
    KeypointMetadata,
    get_keypoint_metadata,
)
15
16
17
18
19
from d2go.data.utils import (
    maybe_subsample_n_images,
    AdhocDatasetManager,
    COCOWithClassesToUse,
)
facebook-github-bot's avatar
facebook-github-bot committed
20
from d2go.runner import Detectron2GoRunner
Yanghan Wang's avatar
Yanghan Wang committed
21
22
23
24
from d2go.utils.testing.data_loader_helper import (
    LocalImageGenerator,
    create_toy_dataset,
)
Sam Tsai's avatar
Sam Tsai committed
25
26
from d2go.utils.testing.helper import tempdir
from detectron2.data import DatasetCatalog, MetadataCatalog
Sam Tsai's avatar
Sam Tsai committed
27
from mobile_cv.common.misc.file_utils import make_temp_directory
facebook-github-bot's avatar
facebook-github-bot committed
28
29


30
def create_test_images_and_dataset_json(data_dir, num_images=10, num_classes=-1):
facebook-github-bot's avatar
facebook-github-bot committed
31
32
33
34
    # create image and json
    image_dir = os.path.join(data_dir, "images")
    os.makedirs(image_dir)
    json_dataset, meta_data = create_toy_dataset(
35
36
37
        LocalImageGenerator(image_dir, width=80, height=60),
        num_images=num_images,
        num_classes=num_classes,
facebook-github-bot's avatar
facebook-github-bot committed
38
39
40
41
42
43
44
45
46
    )
    json_file = os.path.join(data_dir, "{}.json".format("inj_ds1"))
    with open(json_file, "w") as f:
        json.dump(json_dataset, f)

    return image_dir, json_file


class TestD2GoDatasets(unittest.TestCase):
Sam Tsai's avatar
Sam Tsai committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    def test_coco_conversions(self):
        test_data_0 = {
            "info": {},
            "imgs": {
                "img_1": {
                    "file_name": "0.jpg",
                    "width": 600,
                    "height": 600,
                    "id": "img_1",
                }
            },
            "anns": {0: {"id": 0, "image_id": "img_1", "bbox": [30, 30, 60, 20]}},
            "imgToAnns": {"img_1": [0]},
            "cats": {},
        }
        test_data_1 = copy.deepcopy(test_data_0)
        test_data_1["imgs"][123] = test_data_1["imgs"].pop("img_1")
        test_data_1["imgs"][123]["id"] = 123
        test_data_1["anns"][0]["image_id"] = 123
        test_data_1["imgToAnns"][123] = test_data_1["imgToAnns"].pop("img_1")

        for test_data, exp_output in [(test_data_0, [0, 0]), (test_data_1, [123, 123])]:
            with make_temp_directory("detectron2go_tmp_dataset") as tmp_dir:
                src_json = os.path.join(tmp_dir, "source.json")
                out_json = os.path.join(tmp_dir, "output.json")

                with open(src_json, "w") as h_in:
                    json.dump(test_data, h_in)

                out_json = extended_coco.convert_coco_text_to_coco_detection_json(
                    src_json, out_json
                )

                self.assertEqual(out_json["images"][0]["id"], exp_output[0])
                self.assertEqual(out_json["annotations"][0]["image_id"], exp_output[1])

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    def test_annotation_rejection(self):
        img_list = [
            {"id": 0, "width": 50, "height": 50, "file_name": "a.png"},
            {"id": 1, "width": 50, "height": 50, "file_name": "b.png"},
        ]
        ann_list = [
            [
                {
                    "id": 0,
                    "image_id": 0,
                    "category_id": 0,
                    "segmentation": [[0, 0, 10, 0, 10, 10, 0, 10]],
                    "area": 100,
                    "bbox": [0, 0, 10, 10],
                },
                {
                    "id": 1,
                    "image_id": 0,
                    "category_id": 0,
                    "segmentation": [[0, 0, 10, 0, 10, 10, 0, 10]],
                    "area": 100,
                    "bbox": [45, 45, 10, 10],
                },
                {
                    "id": 2,
                    "image_id": 0,
                    "category_id": 0,
                    "segmentation": [[0, 0, 10, 0, 10, 10, 0, 10]],
                    "area": 100,
                    "bbox": [-5, -5, 10, 10],
                },
                {
                    "id": 3,
                    "image_id": 0,
                    "category_id": 0,
                    "segmentation": [[0, 0, 10, 0, 10, 10, 0, 10]],
                    "area": 0,
                    "bbox": [5, 5, 0, 0],
                },
                {
                    "id": 4,
                    "image_id": 0,
                    "category_id": 0,
                    "segmentation": [[]],
                    "area": 25,
                    "bbox": [5, 5, 5, 5],
                },
            ],
            [
                {
                    "id": 5,
                    "image_id": 1,
                    "category_id": 0,
                    "segmentation": [[]],
                    "area": 100,
                    "bbox": [0, 0, 0, 0],
                },
140
            ],
141
142
143
144
145
146
147
148
149
150
        ]

        out_dict_list = extended_coco.convert_to_dict_list(
            "",
            [0],
            img_list,
            ann_list,
        )
        self.assertEqual(len(out_dict_list), 1)

Sam Tsai's avatar
Sam Tsai committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    @tempdir
    def test_coco_injection(self, tmp_dir):
        image_dir, json_file = create_test_images_and_dataset_json(tmp_dir)

        runner = Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                str(x)
                for x in [
                    "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
                    ["inj_ds1", "inj_ds2"],
                    "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                    [image_dir, "/mnt/fair"],
                    "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                    [json_file, "inj_ds2"],
                ]
            ]
        )

        runner.register(cfg)
        inj_ds1 = DatasetCatalog.get("inj_ds1")
        self.assertEqual(len(inj_ds1), 10)
        for dic in inj_ds1:
            self.assertEqual(dic["width"], 80)
            self.assertEqual(dic["height"], 60)

    @tempdir
    def test_sub_dataset(self, tmp_dir):
        image_dir, json_file = create_test_images_and_dataset_json(tmp_dir)

        runner = Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                str(x)
                for x in [
                    "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
Hang Zhang's avatar
Hang Zhang committed
189
                    ["inj_ds3"],
Sam Tsai's avatar
Sam Tsai committed
190
191
192
193
194
                    "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                    [image_dir],
                    "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                    [json_file],
                    "DATASETS.TEST",
Hang Zhang's avatar
Hang Zhang committed
195
                    ("inj_ds3",),
Sam Tsai's avatar
Sam Tsai committed
196
197
                    "D2GO_DATA.TEST.MAX_IMAGES",
                    1,
facebook-github-bot's avatar
facebook-github-bot committed
198
                ]
Sam Tsai's avatar
Sam Tsai committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            ]
        )

        runner.register(cfg)
        with maybe_subsample_n_images(cfg) as new_cfg:
            test_loader = runner.build_detection_test_loader(
                new_cfg, new_cfg.DATASETS.TEST[0]
            )
            self.assertEqual(len(test_loader), 1)

    def test_coco_metadata_registry(self):
        @KEYPOINT_METADATA_REGISTRY.register()
        def TriangleMetadata():
            return KeypointMetadata(
                names=("A", "B", "C"),
                flip_map=(
                    ("A", "B"),
                    ("B", "C"),
                ),
                connection_rules=[
                    ("A", "B", (102, 204, 255)),
                    ("B", "C", (51, 153, 255)),
                ],
facebook-github-bot's avatar
facebook-github-bot committed
222
223
            )

Sam Tsai's avatar
Sam Tsai committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        tri_md = get_keypoint_metadata("TriangleMetadata")
        self.assertEqual(tri_md["keypoint_names"][0], "A")
        self.assertEqual(tri_md["keypoint_flip_map"][0][0], "A")
        self.assertEqual(tri_md["keypoint_connection_rules"][0][0], "A")

    @tempdir
    def test_coco_metadata_register(self, tmp_dir):
        @KEYPOINT_METADATA_REGISTRY.register()
        def LineMetadata():
            return KeypointMetadata(
                names=("A", "B"),
                flip_map=(("A", "B"),),
                connection_rules=[
                    ("A", "B", (102, 204, 255)),
                ],
facebook-github-bot's avatar
facebook-github-bot committed
239
240
            )

Sam Tsai's avatar
Sam Tsai committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        image_dir, json_file = create_test_images_and_dataset_json(tmp_dir)

        runner = Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                str(x)
                for x in [
                    "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
                    ["inj_ds"],
                    "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                    [image_dir],
                    "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                    [json_file],
                    "D2GO_DATA.DATASETS.COCO_INJECTION.KEYPOINT_METADATA",
                    ["LineMetadata"],
                ]
            ]
        )
        runner.register(cfg)
        inj_md = MetadataCatalog.get("inj_ds")
        self.assertEqual(inj_md.keypoint_names[0], "A")
        self.assertEqual(inj_md.keypoint_flip_map[0][0], "A")
        self.assertEqual(inj_md.keypoint_connection_rules[0][0], "A")
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    @tempdir
    def test_coco_create_adhoc_class_to_use_dataset(self, tmp_dir):

        image_dir, json_file = create_test_images_and_dataset_json(
            tmp_dir, num_classes=2
        )

        runner = Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                str(x)
                for x in [
                    "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
                    ["test_adhoc_ds", "test_adhoc_ds2"],
                    "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                    [image_dir, image_dir],
                    "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                    [json_file, json_file],
                ]
            ]
        )
        runner.register(cfg)

        # Test adhoc classes to use
        AdhocDatasetManager.add(COCOWithClassesToUse("test_adhoc_ds", ["class_0"]))
        ds_list = DatasetCatalog.get("test_adhoc_ds@1classes")
        self.assertEqual(len(ds_list), 5)

        # Test adhoc classes to use with suffix removal
        AdhocDatasetManager.add(COCOWithClassesToUse("test_adhoc_ds2@1classes", ["class_0"]))
        ds_list = DatasetCatalog.get("test_adhoc_ds2@1classes")
        self.assertEqual(len(ds_list), 5)