test_meta_arch_semantic_seg.py 3.62 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import os
import shutil
import tempfile
import unittest

import torch
11
from d2go.export.exporter import convert_and_export_predictor
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from d2go.runner import Detectron2GoRunner
from mobile_cv.predictor.api import create_predictor


def _get_batch(height, width, is_train):
    def _get_frame():
        random_image = torch.rand(3, height, width).to(torch.float32)
        ret = {"image": random_image}
        if is_train:
            mask_size = (height, width)
            random_mask = torch.randint(low=0, high=2, size=mask_size).to(torch.int64)
            ret["sem_seg"] = random_mask
        return ret

    batch_size = 2 if is_train else 1
    return [
        {"filename": "some_file", "width": 100, "height": 100, **_get_frame()}
        for _ in range(batch_size)
    ]


def _get_data_loader(height, width, is_train):
    inputs = _get_batch(height, width, is_train)

    def get_data_loader():
        while True:
            yield inputs

    return get_data_loader()


def _get_input_dim(model):
    h = w = max(model.backbone.size_divisibility, 1)
    return h, w


class BaseSemanticSegTestCase:
    class TemplateTestCase(unittest.TestCase):
        def setUp(self):
            self.test_dir = tempfile.mkdtemp(prefix="test_meta_arch_semantic_seg_")
            self.addCleanup(shutil.rmtree, self.test_dir)

            runner = Detectron2GoRunner()
            self.cfg = runner.get_default_cfg()
            self.setup_custom_test()

            self.cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
            self.test_model = runner.build_model(self.cfg, eval_only=True)

        def setup_custom_test(self):
            raise NotImplementedError()

        def test_inference(self):
            h, w = _get_input_dim(self.test_model)
            inputs = _get_batch(h, w, False)
            with torch.no_grad():
                self.test_model(inputs)

        def test_train(self):
            h, w = _get_input_dim(self.test_model)
            inputs = _get_batch(h, w, True)
            self.test_model.train()
            loss_dict = self.test_model(inputs)
            losses = sum(loss_dict.values())
            losses.backward()

        def _test_export(self, predictor_type, compare_match=True):
            h, w = _get_input_dim(self.test_model)
            dl = _get_data_loader(h, w, False)
            inputs = next(iter(dl))

            output_dir = os.path.join(self.test_dir, "test_export")
            predictor_path = convert_and_export_predictor(
                self.cfg, self.test_model, predictor_type, output_dir, dl
            )

            predictor = create_predictor(predictor_path)
            predicotr_outputs = predictor(inputs)
            self.assertEqual(len(predicotr_outputs), len(inputs))

            with torch.no_grad():
                pytorch_outputs = self.test_model(inputs)
                self.assertEqual(len(pytorch_outputs), len(inputs))

            if compare_match:
                for predictor_output, pytorch_output in zip(
                    predicotr_outputs, pytorch_outputs
                ):
                    torch.testing.assert_allclose(
                        predictor_output["sem_seg"], pytorch_output["sem_seg"]
                    )


class TestR50FPN(BaseSemanticSegTestCase.TemplateTestCase):
    def setup_custom_test(self):
        self.cfg.merge_from_file("detectron2://Misc/semantic_R_50_FPN_1x.yaml")
108
109
        # discard pretrained backbone weights
        self.cfg.merge_from_list(["MODEL.WEIGHTS", ""])
110
111
112

    def test_export_torchscript(self):
        self._test_export("torchscript", compare_match=True)