test_rpn_heads.py 4.22 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import logging
import unittest

import torch
Yanghan Wang's avatar
Yanghan Wang committed
9
from d2go.runner import GeneralizedRCNNRunner
facebook-github-bot's avatar
facebook-github-bot committed
10
11
12
13
14
15
16
17
18
19
20
21
from detectron2.modeling import build_anchor_generator, build_backbone
from detectron2.modeling.proposal_generator import rpn

logger = logging.getLogger(__name__)


# overwrite configs if specified, otherwise default config is used
RPN_CFGS = {}


class TestRPNHeads(unittest.TestCase):
    def test_build_rpn_heads(self):
Yanghan Wang's avatar
Yanghan Wang committed
22
        """Make sure rpn heads run"""
facebook-github-bot's avatar
facebook-github-bot committed
23
24
25
26
27

        self.assertGreater(len(rpn.RPN_HEAD_REGISTRY._obj_map), 0)

        for name, builder in rpn.RPN_HEAD_REGISTRY._obj_map.items():
            logger.info("Testing {}...".format(name))
28
            cfg = GeneralizedRCNNRunner.get_default_cfg()
facebook-github-bot's avatar
facebook-github-bot committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            if name in RPN_CFGS:
                cfg.merge_from_file(RPN_CFGS[name])

            backbone = build_backbone(cfg)
            backbone_shape = backbone.output_shape()
            rpn_input_shape = [backbone_shape[x] for x in cfg.MODEL.RPN.IN_FEATURES]
            rpn_head = builder(cfg, rpn_input_shape)

            in_channels = list(backbone_shape.values())[0].channels
            num_anchors = build_anchor_generator(cfg, rpn_input_shape).num_cell_anchors[
                0
            ]

            N, C_in, H, W = 2, in_channels, 24, 32
            input = torch.rand([N, C_in, H, W], dtype=torch.float32)
            LAYERS = len(cfg.MODEL.RPN.IN_FEATURES)
            out = rpn_head([input] * LAYERS)
            self.assertEqual(len(out), 2)
            logits, bbox_reg = out
            for idx in range(LAYERS):
                self.assertEqual(
                    logits[idx].shape,
                    torch.Size(
                        [input.shape[0], num_anchors, input.shape[2], input.shape[3]]
                    ),
                )
                self.assertEqual(
                    bbox_reg[idx].shape,
                    torch.Size(
                        [
                            logits[idx].shape[0],
                            num_anchors * 4,
                            logits[idx].shape[2],
                            logits[idx].shape[3],
                        ]
                    ),
                )

    def test_build_rpn_heads_with_rotated_anchor_generator(self):
Yanghan Wang's avatar
Yanghan Wang committed
68
        """Make sure rpn heads work with rotated anchor generator"""
facebook-github-bot's avatar
facebook-github-bot committed
69
70
71
72
73

        self.assertGreater(len(rpn.RPN_HEAD_REGISTRY._obj_map), 0)

        for name, builder in rpn.RPN_HEAD_REGISTRY._obj_map.items():
            logger.info("Testing {}...".format(name))
74
            cfg = GeneralizedRCNNRunner.get_default_cfg()
facebook-github-bot's avatar
facebook-github-bot committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            if name in RPN_CFGS:
                cfg.merge_from_file(RPN_CFGS[name])

            cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"

            backbone = build_backbone(cfg)
            backbone_shape = backbone.output_shape()
            rpn_input_shape = [backbone_shape[x] for x in cfg.MODEL.RPN.IN_FEATURES]
            rpn_head = builder(cfg, rpn_input_shape)

            in_channels = list(backbone_shape.values())[0].channels
            anchor_generator = build_anchor_generator(cfg, rpn_input_shape)
            num_anchors = anchor_generator.num_cell_anchors[0]
            box_dim = anchor_generator.box_dim

            N, C_in, H, W = 2, in_channels, 24, 32
            input = torch.rand([N, C_in, H, W], dtype=torch.float32)
            LAYERS = len(cfg.MODEL.RPN.IN_FEATURES)
            out = rpn_head([input] * LAYERS)
            self.assertEqual(len(out), 2)
            logits, bbox_reg = out
            for idx in range(LAYERS):
                self.assertEqual(
                    logits[idx].shape,
                    torch.Size(
                        [input.shape[0], num_anchors, input.shape[2], input.shape[3]]
                    ),
                )
                self.assertEqual(
                    bbox_reg[idx].shape,
                    torch.Size(
                        [
                            logits[idx].shape[0],
                            num_anchors * box_dim,
                            logits[idx].shape[2],
                            logits[idx].shape[3],
                        ]
                    ),
                )


if __name__ == "__main__":
    unittest.main()