d2go_dataset_mapper_impl.py 10.5 KB
Newer Older
Yanghan Wang's avatar
Yanghan Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import logging

import numpy as np
import torch
from d2go.data.dataset_mappers.data_reading import (
    read_image_with_prefetch,
    read_sem_seg_file_with_prefetch,
)
from d2go.utils.helper import retryable
from detectron2.data import detection_utils as utils, transforms as T
16
from detectron2.data.transforms.augmentation import AugInput, AugmentationList
Yanghan Wang's avatar
Yanghan Wang committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

logger = logging.getLogger(__name__)

PREFETCHED_FILE_NAME = "prefetch_image"
PREFETCHED_SEM_SEG_FILE_NAME = "prefetch_sem_seg"


class D2GoDatasetMapper(object):
    def __init__(self, cfg, is_train=True, image_loader=None, tfm_gens=None):
        self.tfm_gens = (
            tfm_gens
            if tfm_gens is not None
            else utils.build_transform_gen(cfg, is_train)
        )

        if cfg.INPUT.CROP.ENABLED and is_train:
            self.crop_gen = T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE)
            # D2GO NOTE: when INPUT.CROP.ENABLED, don't allow using RandomCropOp
            assert all(not isinstance(gen, T.RandomCrop) for gen in self.tfm_gens)
        else:
            self.crop_gen = None

        # fmt: off
        self.img_format     = cfg.INPUT.FORMAT  # noqa
        self.mask_on        = cfg.MODEL.MASK_ON  # noqa
        self.mask_format    = cfg.INPUT.MASK_FORMAT  # noqa
        self.keypoint_on    = cfg.MODEL.KEYPOINT_ON  # noqa
        # fmt: on
        if self.keypoint_on and is_train:
            # Flip only makes sense in training
            self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices(
                cfg.DATASETS.TRAIN
            )
        else:
            self.keypoint_hflip_indices = None

        self.load_proposals = cfg.MODEL.LOAD_PROPOSALS
        if self.load_proposals:
            self.proposal_min_box_size = cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE
            self.proposal_topk = (
                cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN
                if is_train
                else cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST
            )

        self.is_train = is_train

        # Setup image loader:
        self.image_loader = image_loader
        self.backfill_size = cfg.D2GO_DATA.MAPPER.BACKFILL_SIZE
        self.retry = cfg.D2GO_DATA.MAPPER.RETRY
        self.catch_exception = cfg.D2GO_DATA.MAPPER.CATCH_EXCEPTION

        if self.backfill_size:
            if cfg.DATALOADER.ASPECT_RATIO_GROUPING:
                logger.warning(
                    "ASPECT_RATIO_GROUPING may not work if image's width & height"
                    " are not given in json dataset when calling extended_coco_load,"
                    " if you encounter issue, consider disable ASPECT_RATIO_GROUPING."
                )

        self._error_count = 0
        self._total_counts = 0
        self._error_types = {}

    def _original_call(self, dataset_dict):
        """
        Modified from detectron2's original __call__ in DatasetMapper
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below

        image = self._read_image(dataset_dict, format=self.img_format)
        if not self.backfill_size:
            utils.check_image_size(dataset_dict, image)

        image, dataset_dict = self._custom_transform(image, dataset_dict)

        inputs = AugInput(image=image)
        if "annotations" not in dataset_dict:
            transforms = AugmentationList(
                ([self.crop_gen] if self.crop_gen else []) + self.tfm_gens
            )(inputs)
            image = inputs.image
        else:
            # pass additional arguments, will only be used when the Augmentation
            #   takes `annotations` as input
            inputs.annotations = dataset_dict["annotations"]
            # Crop around an instance if there are instances in the image.
            if self.crop_gen:
                crop_tfm = utils.gen_crop_transform_with_instance(
                    self.crop_gen.get_crop_size(image.shape[:2]),
                    image.shape[:2],
                    np.random.choice(dataset_dict["annotations"]),
                )
                inputs.image = crop_tfm.apply_image(image)
            transforms = AugmentationList(self.tfm_gens)(inputs)
            image = inputs.image
            if self.crop_gen:
                transforms = crop_tfm + transforms

        image_shape = image.shape[:2]  # h, w
        if image.ndim == 2:
            image = np.expand_dims(image, 2)
        dataset_dict["image"] = torch.as_tensor(
            image.transpose(2, 0, 1).astype("float32")
        )
        # Can use uint8 if it turns out to be slow some day

        if self.load_proposals:
            utils.transform_proposals(
                dataset_dict,
                image_shape,
                transforms,
                proposal_topk=self.proposal_topk,
                min_box_size=self.proposal_min_box_size,
            )

        if not self.is_train:
            dataset_dict.pop("annotations", None)
            dataset_dict.pop("sem_seg_file_name", None)
            return dataset_dict

        if "annotations" in dataset_dict:
            for anno in dataset_dict["annotations"]:
                if not self.mask_on:
                    anno.pop("segmentation", None)
                if not self.keypoint_on:
                    anno.pop("keypoints", None)

            annos = [
                utils.transform_instance_annotations(
                    obj,
                    transforms,
                    image_shape,
                    keypoint_hflip_indices=self.keypoint_hflip_indices,
                )
                for obj in dataset_dict.pop("annotations")
                if obj.get("iscrowd", 0) == 0
            ]
            instances = utils.annotations_to_instances(
                annos, image_shape, mask_format=self.mask_format
            )
            # Create a tight bounding box from masks, useful when image is cropped
            if self.crop_gen and instances.has("gt_masks"):
                instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
            dataset_dict["instances"] = utils.filter_empty_instances(instances)

        if "sem_seg_file_name" in dataset_dict:
            sem_seg_gt = read_sem_seg_file_with_prefetch(
                dataset_dict.pop("sem_seg_file_name"),
                prefetched=dataset_dict.get(PREFETCHED_SEM_SEG_FILE_NAME, None),
            )
            if len(sem_seg_gt.shape) > 2:
                sem_seg_gt = sem_seg_gt.squeeze(2)
            sem_seg_gt = transforms.apply_segmentation(sem_seg_gt)
            sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long"))
            dataset_dict["sem_seg"] = sem_seg_gt

        # extend standard D2 semantic segmentation to support multiple segmentation
        # files, each file can represent a class
        if "multi_sem_seg_file_names" in dataset_dict:
            raise NotImplementedError()

        if "_post_process_" in dataset_dict:
            proc_func = dataset_dict.pop("_post_process_")
            dataset_dict = proc_func(dataset_dict)

        return dataset_dict

    def __call__(self, dataset_dict):
        self._total_counts += 1

        @retryable(num_tries=self.retry, sleep_time=0.1)
        def _f():
            return self._original_call(dataset_dict)

        if not self.catch_exception:
            return _f()

        try:
            return _f()
        except Exception as e:
            self._error_count += 1
            # if self._error_count % 10 == 1:
            #     # print the stacktrace for easier debugging
            #     traceback.print_exc()
            error_type = type(e).__name__
            self._error_types[error_type] = self._error_types.get(error_type, 0) + 1

            if self._error_count % 100 == 0:
                logger.warning(
                    "{}Error when applying transform for dataset_dict: {};"
                    " error rate {}/{} ({:.2f}%), msg: {}".format(
                        self._get_logging_prefix(),
                        dataset_dict,
                        self._error_count,
                        self._total_counts,
                        100.0 * self._error_count / self._total_counts,
                        repr(e),
                    )
                )
                self._log_error_type_stats()

            # NOTE: the contract with MapDataset allows return `None` such that
            # it'll randomly use other element in the dataset. We use this
            # feature to handle error.
            return None

    def _get_logging_prefix(self):
        worker_info = torch.utils.data.get_worker_info()
        if not worker_info:
            return ""

        prefix = "[worker: {}/{}] ".format(worker_info.id, worker_info.num_workers)
        return prefix

    def _log_error_type_stats(self):
        error_type_count_msgs = [
            "{}: {}/{} ({}%)".format(
                k, v, self._total_counts, 100.0 * v / self._total_counts
            )
            for k, v in self._error_types.items()
        ]
        logger.warning(
            "{}Error statistics:\n{}".format(
                self._get_logging_prefix(), "\n".join(error_type_count_msgs)
            )
        )

    def _read_image(self, dataset_dict, format=None):
        if not (self.image_loader and self.image_loader.support(dataset_dict)):
            # fallback to use D2's read_image
            image = read_image_with_prefetch(
                dataset_dict["file_name"],
                format=format,
                prefetched=dataset_dict.get(PREFETCHED_FILE_NAME),
            )
            if self.backfill_size:
                h, w, _ = image.shape
                dataset_dict["width"] = w
                dataset_dict["height"] = h
            return image

        image = self.image_loader(dataset_dict)
        if self.backfill_size:
            dataset_dict["width"] = image.width
            dataset_dict["height"] = image.height

        return utils.convert_PIL_to_numpy(image, format)

    def _custom_transform(self, image, dataset_dict):
        """
        Override this method to inject custom transform.
        """
        return image, dataset_dict

    def __repr__(self):
        return (
            self.__class__.__name__
            + ":\n"
            + "\n".join(
                [
                    "  is_train: {}".format(self.is_train),
                    "  image_loader: {}".format(self.image_loader),
                    "  tfm_gens: \n{}".format(
                        "\n".join(["    - {}".format(x) for x in self.tfm_gens])
                    ),
                ]
            )
        )