test_modeling_image_pooler.py 5.59 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import unittest

import d2go.data.transforms.box_utils as bu
import d2go.modeling.image_pooler as image_pooler
import numpy as np
import torch
Yanghan Wang's avatar
Yanghan Wang committed
11
from d2go.utils.testing import rcnn_helper as rh
facebook-github-bot's avatar
facebook-github-bot committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from detectron2.structures import Boxes


class TestModelingImagePooler(unittest.TestCase):
    def test_image_pooler(self):
        H, W = 8, 6
        image = torch.zeros(3, H, W)
        # xyxy
        boxes = torch.Tensor([[2, 3, 5, 7]])
        image[0, 3:7, 2:5] = 1
        image[1, 3:7, 2:5] = 2
        image[2, 3:7, 2:5] = 4

        img_pooler = image_pooler.ImagePooler(resize_short=6, resize_max=12).eval()
        pooled_img, pooled_box, transforms = img_pooler(image, boxes)

        # check pooled images
        self.assertEqual(pooled_img.shape, torch.Size([3, 8, 6]))
        self.assertArrayEqual(torch.unique(pooled_img[0, :, :]), [1])
        self.assertArrayEqual(torch.unique(pooled_img[1, :, :]), [2])
        self.assertArrayEqual(torch.unique(pooled_img[2, :, :]), [4])

        # check pooled boxes, in xyxy format
        self.assertArrayEqual(pooled_box, [[0, 0, 6, 8]])

        # inverse of transforms
        trans_inv = transforms.inverse()

        # inverse of boxes, xyxy
        inversed_box = trans_inv.apply_box(pooled_box)
        self.assertArrayEqual(inversed_box, boxes)

        pooled_sub_box = np.array([[2, 2, 4, 6]])
        inversed_sub_box = trans_inv.apply_box(pooled_sub_box)
        self.assertArrayEqual(inversed_sub_box, [[3, 4, 4, 6]])

    def test_image_pooler_scale_box(self):
        H, W = 8, 6
        image = torch.zeros(3, H, W)
        # xyxy
        boxes = torch.Tensor([[2, 3, 5, 7]])
        image[0, 3:7, 2:5] = 1
        image[1, 3:7, 2:5] = 2
        image[2, 3:7, 2:5] = 4

        img_pooler = image_pooler.ImagePooler(
            resize_type=None, box_scale_factor=4.0
        ).eval()
        pooled_img, pooled_box, transforms = img_pooler(image, boxes)

        # check pooled images
        self.assertEqual(pooled_img.shape, torch.Size([3, 8, 6]))
        self.assertArrayEqual(pooled_img, image)

        # check pooled boxes, in xyxy format, the box before scaling
        self.assertArrayEqual(pooled_box, [[2, 3, 5, 7]])

    def test_image_pooler_scale_box_large_crop_only(self):
        """ Crop bbox """
        H, W = 398, 224
        all_boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]]))
        image = rh.get_batched_inputs(1, (H, W), (H, W), all_boxes)[0]["image"]

        boxes = bu.get_box_union(all_boxes)
        self.assertArrayEqual(boxes.tensor, [[50, 40, 200, 120]])

        img_pooler = image_pooler.ImagePooler(
            resize_type=None, box_scale_factor=1.0
        ).eval()
        pooled_img, pooled_box, transforms = img_pooler(image, boxes.tensor)
        self.assertEqual(pooled_img.shape, torch.Size([3, 80, 150]))
        sub_boxes = rh.get_detected_instances_from_image([{"image": pooled_img}])[
            0
        ].pred_boxes
        self.assertArrayEqual(sub_boxes.tensor, [[0, 0, 50, 40], [100, 20, 150, 80]])

    def test_image_pooler_scale_box_large_crop_and_scale(self):
        """ Crop bbox that is scaled """
        H, W = 398, 224
        all_boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]]))
        image = rh.get_batched_inputs(1, (H, W), (H, W), all_boxes)[0]["image"]
        boxes = bu.get_box_union(all_boxes)

        img_pooler = image_pooler.ImagePooler(
            resize_type=None, box_scale_factor=1.2
        ).eval()
        pooled_img, pooled_box, transforms = img_pooler(image, boxes.tensor)
        self.assertEqual(pooled_img.shape, torch.Size([3, 96, 180]))

        # bbox with scaling in the original space
        orig_crop_box = transforms.inverse().apply_box(
            [0, 0, pooled_img.shape[2], pooled_img.shape[1]]
        )
        self.assertArrayEqual(orig_crop_box, [[35, 32, 215, 128]])

        sub_boxes = rh.get_detected_instances_from_image([{"image": pooled_img}])[
            0
        ].pred_boxes
        # gt_offset_xy = (50 - 35 = 15, 40 - 32 = 8)
        self.assertArrayEqual(sub_boxes.tensor, [[15, 8, 65, 48], [115, 28, 165, 88]])

    def test_image_pooler_scale_box_large_crop_scale_and_resize(self):
        """ Crop bbox that is scaled, resize the cropped box """
        H, W = 398, 224
        all_boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]]))
        image = rh.get_batched_inputs(1, (H, W), (H, W), all_boxes)[0]["image"]
        boxes = bu.get_box_union(all_boxes)

        img_pooler = image_pooler.ImagePooler(
            resize_type="resize_shortest",
            resize_short=48,
            resize_max=180,
            box_scale_factor=1.2,
        ).eval()
        pooled_img, pooled_box, transforms = img_pooler(image, boxes.tensor)
        self.assertEqual(pooled_img.shape, torch.Size([3, 48, 90]))

        # bbox with scaling in the original space
        orig_crop_box = transforms.inverse().apply_box(
            [0, 0, pooled_img.shape[2], pooled_img.shape[1]]
        )
        self.assertArrayEqual(orig_crop_box, [[35, 32, 215, 128]])

        # bbox without scaling in the original space
        orig_boxes = transforms.inverse().apply_box(pooled_box)
        self.assertArrayEqual(orig_boxes, boxes.tensor)

        sub_boxes = rh.get_detected_instances_from_image([{"image": pooled_img}])[
            0
        ].pred_boxes
        # [[7.5, 4, 32.5, 24], [57.5, 14, 82.5, 44]]
        self.assertArrayEqual(sub_boxes.tensor, [[7, 4, 33, 24], [57, 14, 83, 44]])

    def assertArrayEqual(self, a1, a2):
        self.assertTrue(np.array_equal(a1, a2))