test_visualization.py 6.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import json
import os
import unittest
from typing import Optional, List, Tuple, Dict

import d2go.runner.default_runner as default_runner
12
import numpy as np
13
14
15
16
17
18
19
20
import torch
from d2go.utils.testing.data_loader_helper import (
    LocalImageGenerator,
    create_toy_dataset,
)
from d2go.utils.testing.helper import tempdir
from d2go.utils.visualization import VisualizerWrapper, DataLoaderVisWrapper
from detectron2.data import DatasetCatalog
21
from detectron2.modeling import META_ARCH_REGISTRY
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from detectron2.structures import Boxes, Instances
from detectron2.utils.events import EventStorage


def create_test_images_and_dataset_json(
    data_dir: str, img_w: int, img_h: int, num_images: int = 10, num_classes: int = -1
) -> Tuple[str, str]:
    # create image and json
    image_dir = os.path.join(data_dir, "images")
    os.makedirs(image_dir)
    json_dataset, meta_data = create_toy_dataset(
        LocalImageGenerator(image_dir, width=img_w, height=img_h),
        num_images=num_images,
        num_classes=num_classes,
    )
    json_file = os.path.join(data_dir, "{}.json".format("inj_ds1"))

    with open(json_file, "w") as f:
        json.dump(json_dataset, f)

    return image_dir, json_file


def create_dummy_input_dict(
    img_w: int = 60, img_h: int = 60, bbox_list: Optional[List[List[int]]] = None
) -> Dict:
    # Create dummy data
    instance = Instances((img_w, img_h))
    if bbox_list is not None:
        instance.gt_boxes = Boxes(torch.tensor([[10, 10, 20, 20]]))
        instance.gt_classes = torch.tensor([0])
    input_dict = {"image": torch.zeros(3, img_w, img_h), "instances": instance}
    return input_dict


57
58
59
60
61
62
63
@META_ARCH_REGISTRY.register()
class DummyMetaArch(torch.nn.Module):
    @staticmethod
    def visualize_train_input(visualizer_wrapper, input_dict):
        return {"default": np.zeros((60, 60, 30)), "secondary": np.zeros((60, 60, 30))}


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
class ImageDictStore:
    def __init__(self):
        self.write_buffer = []

    def add_image(self, **kwargs):
        self.write_buffer.append(copy.deepcopy(kwargs))


class MockTbxWriter:
    def __init__(self):
        self._writer = ImageDictStore()


class TestVisualization(unittest.TestCase):
    @tempdir
    def test_visualizer_wrapper(self, tmp_dir: str):
        image_dir, json_file = create_test_images_and_dataset_json(tmp_dir, 60, 60)

        # Create config data
        runner = default_runner.Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
                str(["inj_ds1"]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                str([image_dir]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                str([json_file]),
                "DATASETS.TRAIN",
                str(["inj_ds1"]),
            ]
        )

        # Register configs
        runner.register(cfg)
        DatasetCatalog.get("inj_ds1")

        # Create dummy data to pass to wrapper
        input_dict = create_dummy_input_dict(60, 60, [[10, 10, 20, 20]])
        vis_wrapper = VisualizerWrapper(cfg)
        vis_image = vis_wrapper.visualize_train_input(input_dict)
        # Visualize train by default scales input image by 2
        self.assertTrue(any(vis_image[20, 20, :] != 0))
        self.assertFalse(any(vis_image[30, 30, :] != 0))
        self.assertTrue(any(vis_image[40, 40, :] != 0))

    @tempdir
    def test_dataloader_visualizer_wrapper(self, tmp_dir: str):
        image_dir, json_file = create_test_images_and_dataset_json(tmp_dir, 60, 60)

        # Create config data
        runner = default_runner.Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
                str(["inj_ds2"]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                str([image_dir]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                str([json_file]),
                "DATASETS.TRAIN",
                str(["inj_ds2"]),
            ]
        )

        # Register configs
        runner.register(cfg)
        DatasetCatalog.get("inj_ds2")

        with EventStorage():
            # Create mock storage for writer
            mock_tbx_writer = MockTbxWriter()
            # Create a wrapper around an iterable object and run once
            input_dict = create_dummy_input_dict(60, 60, [[1, 1, 2, 2]])
            dl_wrapper = DataLoaderVisWrapper(
                cfg, mock_tbx_writer, [[input_dict], [input_dict]]
            )
            for _ in dl_wrapper:
                break

            # Check data has been written to buffer
            self.assertTrue(len(mock_tbx_writer._writer.write_buffer) == 1)
            vis_image_dict = mock_tbx_writer._writer.write_buffer[0]
            self.assertTrue("tag" in vis_image_dict)
            self.assertTrue("img_tensor" in vis_image_dict)
            self.assertTrue("global_step" in vis_image_dict)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

    @tempdir
    def test_dict_based_dataloader_visualizer_wrapper(self, tmp_dir: str):
        image_dir, json_file = create_test_images_and_dataset_json(tmp_dir, 60, 60)

        # Create config data
        runner = default_runner.Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
                str(["inj_ds3"]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                str([image_dir]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                str([json_file]),
                "DATASETS.TRAIN",
                str(["inj_ds3"]),
                "MODEL.META_ARCHITECTURE",
                "DummyMetaArch",
            ]
        )

        # Register configs
        runner.register(cfg)
        DatasetCatalog.get("inj_ds3")

        with EventStorage():
            # Create mock storage for writer
            mock_tbx_writer = MockTbxWriter()
            # Create a wrapper around an iterable object and run once
            input_dict = create_dummy_input_dict(60, 60, [[1, 1, 2, 2]])
            dl_wrapper = DataLoaderVisWrapper(
                cfg, mock_tbx_writer, [[input_dict], [input_dict]]
            )
            for _ in dl_wrapper:
                break

            # Check data has been written to buffer
            self.assertTrue(len(mock_tbx_writer._writer.write_buffer) == 2)
            self.assertTrue(
                "train_loader_batch_0/default"
                in mock_tbx_writer._writer.write_buffer[0]["tag"]
            )
            self.assertTrue(
                "train_loader_batch_0/secondary"
                in mock_tbx_writer._writer.write_buffer[1]["tag"]
            )