test_evaluator.py 3.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python3

import os
import tempfile
import unittest
from collections import defaultdict

import torch
from d2go.evaluation.evaluator import inference_on_dataset, ResultCache
10
from detectron2.evaluation import DatasetEvaluator, DatasetEvaluators
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87


class EvaluatorForTest(DatasetEvaluator):
    def __init__(self):
        self.results = []

    def reset(self):
        self.results.clear()

    def process(self, inputs, outputs):
        self.results.append(outputs)

    def evaluate(self):
        return sum(self.results)


class EvaluatorWithCheckpointForTest(DatasetEvaluator):
    def __init__(self, save_dir):
        self.results = []
        self.result_cache = ResultCache(save_dir)
        self._call_count = defaultdict(int)

    def reset(self):
        self.results.clear()
        self._call_count["reset"] += 1

    def has_finished_process(self):
        return self.result_cache.has_cache()

    def process(self, inputs, outputs):
        assert not self.result_cache.has_cache()
        self.results.append(outputs)
        self._call_count["process"] += 1

    def evaluate(self):
        if not self.result_cache.has_cache():
            self.result_cache.save(self.results)
        else:
            self.results = self.result_cache.load()
        self._call_count["evaluate"] += 1

        return sum(self.results)


class Model(torch.nn.Module):
    def forward(self, x):
        return x


class TestEvaluator(unittest.TestCase):
    def test_inference(self):
        model = Model()
        evaluator = EvaluatorForTest()
        data_loader = [1, 2, 3, 4, 5]
        results = inference_on_dataset(model, data_loader, evaluator)
        self.assertEqual(results, 15)

    def test_inference_with_checkpoint(self):
        with tempfile.TemporaryDirectory() as save_dir:
            model = Model()
            evaluator = EvaluatorWithCheckpointForTest(save_dir)
            self.assertFalse(evaluator.has_finished_process())
            data_loader = [1, 2, 3, 4, 5]
            results = inference_on_dataset(model, data_loader, evaluator)
            self.assertEqual(results, 15)
            self.assertEqual(evaluator._call_count["reset"], 1)
            self.assertEqual(evaluator._call_count["process"], 5)
            self.assertEqual(evaluator._call_count["evaluate"], 1)

            # run again with cache
            self.assertTrue(evaluator.has_finished_process())
            results = inference_on_dataset(model, data_loader, evaluator)
            self.assertEqual(results, 15)
            self.assertEqual(evaluator._call_count["reset"], 2)
            self.assertEqual(evaluator._call_count["process"], 5)
            self.assertEqual(evaluator._call_count["evaluate"], 2)
            self.assertTrue(os.path.isfile(evaluator.result_cache.cache_file))
88
89
90
91
92
93
94
95
96
97
98
99

    def test_evaluators_patch(self):
        with tempfile.TemporaryDirectory() as save_dir:
            cp_evaluator = EvaluatorWithCheckpointForTest(save_dir)
            evaluator = DatasetEvaluators([cp_evaluator])
            self.assertFalse(evaluator.has_finished_process())

            cp_evaluator.reset()
            cp_evaluator.process(1, 1)
            cp_evaluator.evaluate()

            self.assertTrue(evaluator.has_finished_process())