data_loader_helper.py 5.97 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import contextlib
import itertools
import json
import os
import uuid

from d2go.data.datasets import register_dataset_split
12
from d2go.runner import create_runner
facebook-github-bot's avatar
facebook-github-bot committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from detectron2.data import DatasetCatalog, MetadataCatalog
from mobile_cv.common.misc.file_utils import make_temp_directory
from PIL import Image


IM_DIR = "image_directory"
ANN_FN = "annotation_file"


def create_toy_dataset(
    image_generator, num_images, num_classes=-1, num_keypoints=0, is_rotated=False
):
    """ given image_generator, create a dataset with toy annotations and catagories """
    categories = []
    images = []
    annotations = []
    meta_data = {}

    if num_classes == -1:
        num_classes = num_images

    for i in range(num_images):
        image_generator.prepare_image(i)
        image_dict = image_generator.get_image_dict(i)
        width = image_dict["width"]
        height = image_dict["height"]
        images.append(image_dict)

        if i < num_classes:
            categories.append({"name": "class_{}".format(i), "id": i})

        bbox = (
            [width / 4, height / 4, width / 2, height / 2]  # XYWH_ABS
            if not is_rotated
            else [width / 2, height / 2, width / 2, height / 2, 45] # cXcYWHO_ABS
        )

        annotations.append(
            {
                "image_id": i,
                "category_id": i % num_classes,
                "id": i,
                "bbox": bbox,
                "keypoints": list(
                    itertools.chain.from_iterable(
                        [
                            (
                                float(idx) / width / 2 + width / 4,
                                float(idx) / height / 2 + height / 4,
                                1,
                            )
                            for idx in range(num_keypoints)
                        ]
                    )
                ),
                "area": width * height,
                "iscrowd": 0,
                "ignore": 0,
                "segmentation": [],
            }
        )

    if num_keypoints > 0:
        keypoint_names = [f"kp_{idx}" for idx in range(num_keypoints)]
        meta_data.update({"keypoint_names": keypoint_names, "keypoint_flip_map": ()})

    return (
        {"categories": categories, "images": images, "annotations": annotations},
        meta_data,
    )


@contextlib.contextmanager
def register_toy_dataset(
    dataset_name, image_generator, num_images, num_classes=-1, num_keypoints=0
):
    json_dataset, meta_data = create_toy_dataset(
        image_generator,
        num_images=num_images,
        num_classes=num_classes,
        num_keypoints=num_keypoints,
    )

    with make_temp_directory("detectron2go_tmp_dataset") as tmp_dir:
        json_file = os.path.join(tmp_dir, "{}.json".format(dataset_name))
        with open(json_file, "w") as f:
            json.dump(json_dataset, f)

        split_dict = {
            IM_DIR: image_generator.get_image_dir(),
            ANN_FN: json_file,
            "meta_data": meta_data,
        }
        register_dataset_split(dataset_name, split_dict)

        try:
            yield
        finally:
            DatasetCatalog.remove(dataset_name)
            MetadataCatalog.remove(dataset_name)


def create_local_dataset(
    out_dir,
    num_images,
    image_width,
    image_height,
    num_classes=-1,
    num_keypoints=0,
    is_rotated=False,
):
    dataset_name = "_test_ds_" + str(uuid.uuid4())

    img_gen = LocalImageGenerator(out_dir, image_width, image_height)
    json_dataset, meta_data = create_toy_dataset(
        img_gen,
        num_images=num_images,
        num_classes=num_classes,
        num_keypoints=num_keypoints,
    )
    json_file = os.path.join(out_dir, "{}.json".format(dataset_name))
    with open(json_file, "w") as f:
        json.dump(json_dataset, f)

    split_dict = {
        IM_DIR: img_gen.get_image_dir(),
        ANN_FN: json_file,
        "meta_data": meta_data,
    }
    if is_rotated:
        split_dict['evaluator_type'] = "rotated_coco"
    register_dataset_split(dataset_name, split_dict)

    return dataset_name


class LocalImageGenerator:
    def __init__(self, image_dir, width, height):
        self._width = width
        self._height = height
        self._image_dir = image_dir

    def get_image_dir(self):
        return self._image_dir

    def get_image_dict(self, i):
        return {
            "file_name": "{}.jpg".format(i),
            "width": self._width,
            "height": self._height,
            "id": i,
        }

    def prepare_image(self, i):
        image = Image.new("RGB", (self._width, self._height))
        image.save(os.path.join(self._image_dir, self.get_image_dict(i)["file_name"]))
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

@contextlib.contextmanager
def create_fake_detection_data_loader(height, width, is_train):
    with make_temp_directory("detectron2go_tmp_dataset") as dataset_dir:
        runner = create_runner("d2go.runner.GeneralizedRCNNRunner")
        cfg = runner.get_default_cfg()
        cfg.DATASETS.TRAIN = ["default_dataset_train"]
        cfg.DATASETS.TEST = ["default_dataset_test"]

        with make_temp_directory("detectron2go_tmp_dataset") as dataset_dir:
            image_dir = os.path.join(dataset_dir, "images")
            os.makedirs(image_dir)
            image_generator = LocalImageGenerator(image_dir, width=width, height=height)

            if is_train:
                with register_toy_dataset(
                    "default_dataset_train", image_generator, num_images=3
                ):
                    train_loader = runner.build_detection_train_loader(cfg)
                    yield train_loader
            else:
                with register_toy_dataset(
                    "default_dataset_test", image_generator, num_images=3
                ):
                    test_loader = runner.build_detection_test_loader(
                        cfg, dataset_name="default_dataset_test"
                    )
                    yield test_loader