evaluator.py 2.85 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

"""
Binary to evaluate predictor-based model (consist of models in deployable format such
torchscript, caffe2, etc.) using Detectron2Go system (dataloading, evaluation, etc).
"""

import logging

Yanghan Wang's avatar
Yanghan Wang committed
11
import torch
facebook-github-bot's avatar
facebook-github-bot committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from d2go.distributed import launch
from d2go.setup import (
    basic_argument_parser,
    caffe2_global_init,
    post_mortem_if_fail_for_main,
    prepare_for_launch,
    setup_after_launch,
)
from d2go.utils.misc import print_metrics_table
from mobile_cv.common.misc.py import post_mortem_if_fail
from mobile_cv.predictor.api import create_predictor

logger = logging.getLogger("d2go.tools.caffe2_evaluator")


def main(
    cfg,
    output_dir,
    runner,
    # binary specific optional arguments
    predictor_path,
    num_threads=None,
    caffe2_engine=None,
    caffe2_logging_print_net_summary=0,
):
    torch.backends.quantized.engine = cfg.QUANTIZATION.BACKEND
    print("run with quantized engine: ", torch.backends.quantized.engine)

    setup_after_launch(cfg, output_dir, runner)
    caffe2_global_init(caffe2_logging_print_net_summary, num_threads)

    predictor = create_predictor(predictor_path)
    metrics = runner.do_test(cfg, predictor)
    print_metrics_table(metrics)
    return {
        "accuracy": metrics,
        "metrics": metrics,
    }


@post_mortem_if_fail()
def run_with_cmdline_args(args):
    cfg, output_dir, runner = prepare_for_launch(args)
    launch(
        post_mortem_if_fail_for_main(main),
        args.num_processes,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        backend="GLOO",
        always_spawn=False,
        args=(
            cfg,
            output_dir,
            runner,
            # binary specific optional arguments
            args.predictor_path,
            args.num_threads,
            args.caffe2_engine,
            args.caffe2_logging_print_net_summary,
        ),
    )


if __name__ == "__main__":
    parser = basic_argument_parser()
    parser.add_argument(
        "--predictor-path",
        type=str,
        help="Path (a directory) to the exported model that will be evaluated",
    )
    # === performance config ===========================================================
    parser.add_argument(
        "--num-threads",
        type=int,
        default=None,
        help="Number of omp/mkl threads (per process) to use in Caffe2's GlobalInit",
    )
    parser.add_argument(
        "--caffe2-engine",
        type=str,
        default=None,
        help="If set, engine of all ops will be set by this value",
    )
    parser.add_argument(
        "--caffe2_logging_print_net_summary",
        type=int,
        default=0,
        help="Control the --caffe2_logging_print_net_summary in GlobalInit",
    )
    run_with_cmdline_args(parser.parse_args())