d2go_beginner.ipynb 72.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# D2Go Beginner's Tutorial\n",
    "\n",
    "This is beginner tutorial for [d2go project](https://github.com/facebookresearch/d2go). We will go through some basic usage of d2go, including:\n",
    "- Run inference on images or videos, with a pretrained d2go model\n",
    "- Load a new dataset and train a d2go model\n",
    "- Export models to int8 using post-training quantization. \n",
    "\n",
    "Please install d2go before running this tutorial following the [instructions](https://github.com/facebookresearch/d2go)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference with Pre-trained Models\n",
    "\n",
    "In this section, we will show how to load pretrained models using d2go model_zoo API, and how to make predictions with d2go models and visualize the output. \n",
    "\n",
    "- First import the model zoo API from d2go and get a pretrained Faster R-CNN model with FBNetV3 backbone"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
Yanghan Wang's avatar
Yanghan Wang committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
      "/home/snowytiger/.local/share/virtualenvs/d2go-x9zKx9Ui/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "INFO:d2go.modeling.backbone.fbnet_v2:Using un-unified arch_def for ARCH \"FBNetV3_A\" (without scaling):\n",
      "trunk\n",
      "- [('conv_k3', 16, 2, 1), ('ir_k3', 16, 1, 2, {'expansion': 1}, {'less_se_channels': False})]\n",
      "- [('ir_k5', 24, 2, 1, {'expansion': 4}, {'less_se_channels': False}), ('ir_k5', 24, 1, 3, {'expansion': 3}, {'less_se_channels': False})]\n",
      "- [('ir_k5_se', 32, 2, 1, {'expansion': 4}, {'less_se_channels': False}), ('ir_k3_se', 32, 1, 3, {'expansion': 3}, {'less_se_channels': False})]\n",
      "- [('ir_k5', 64, 2, 1, {'expansion': 4}, {'less_se_channels': False}), ('ir_k3', 64, 1, 3, {'expansion': 3}, {'less_se_channels': False}), ('ir_k5_se', 112, 1, 1, {'expansion': 4}, {'less_se_channels': False}), ('ir_k5_se', 112, 1, 5, {'expansion': 3}, {'less_se_channels': False})]\n",
      "rpn\n",
      "- [('ir_k5_se', 112, 1, 5, {'expansion': 3}, {'less_se_channels': False})]\n",
      "bbox\n",
      "- [('ir_k5_se', 184, 2, 1, {'expansion': 4}, {'less_se_channels': False}), ('ir_k3_se', 184, 1, 4, {'expansion': 4}, {'less_se_channels': False}), ('ir_k5_se', 200, 1, 1, {'expansion': 6}, {'less_se_channels': False})]\n",
      "mask\n",
      "- [('ir_k3', 128, 2, 1, {'expansion': 4}), ('ir_k3', 128, 1, 2, {'expansion': 6}), ('ir_k3', 128, -2, 1, {'expansion': 6}), ('ir_k3', 64, -2, 1, {'expansion': 3})]\n",
      "basic_args\n",
      "  {'dw_skip_bnrelu': True, 'zero_last_bn_gamma': False}\n",
      "INFO:d2go.modeling.backbone.fbnet_v2:Build FBNet using unified arch_def:\n",
      "trunk\n",
      "- {'block_op': 'conv_k3', 'block_cfg': {'out_channels': 16, 'stride': 2}, 'stage_idx': 0, 'block_idx': 0}\n",
      "- {'block_op': 'ir_k3', 'block_cfg': {'out_channels': 16, 'stride': 1, 'expansion': 1, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 1}\n",
      "- {'block_op': 'ir_k3', 'block_cfg': {'out_channels': 16, 'stride': 1, 'expansion': 1, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 2}\n",
      "- {'block_op': 'ir_k5', 'block_cfg': {'out_channels': 24, 'stride': 2, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 1, 'block_idx': 0}\n",
      "- {'block_op': 'ir_k5', 'block_cfg': {'out_channels': 24, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 1, 'block_idx': 1}\n",
      "- {'block_op': 'ir_k5', 'block_cfg': {'out_channels': 24, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 1, 'block_idx': 2}\n",
      "- {'block_op': 'ir_k5', 'block_cfg': {'out_channels': 24, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 1, 'block_idx': 3}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 32, 'stride': 2, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 2, 'block_idx': 0}\n",
      "- {'block_op': 'ir_k3_se', 'block_cfg': {'out_channels': 32, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 2, 'block_idx': 1}\n",
      "- {'block_op': 'ir_k3_se', 'block_cfg': {'out_channels': 32, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 2, 'block_idx': 2}\n",
      "- {'block_op': 'ir_k3_se', 'block_cfg': {'out_channels': 32, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 2, 'block_idx': 3}\n",
      "- {'block_op': 'ir_k5', 'block_cfg': {'out_channels': 64, 'stride': 2, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 0}\n",
      "- {'block_op': 'ir_k3', 'block_cfg': {'out_channels': 64, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 1}\n",
      "- {'block_op': 'ir_k3', 'block_cfg': {'out_channels': 64, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 2}\n",
      "- {'block_op': 'ir_k3', 'block_cfg': {'out_channels': 64, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 3}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 4}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 5}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 6}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 7}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 8}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 3, 'block_idx': 9}\n",
      "WARNING:mobile_cv.arch.utils.helper:Arguments ['width_divisor', 'dw_skip_bnrelu', 'zero_last_bn_gamma'] skipped for op Conv2d\n",
      "INFO:d2go.modeling.backbone.fbnet_v2:Build FBNet using unified arch_def:\n",
      "rpn\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 0}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 1}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 2}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 3}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 112, 'stride': 1, 'expansion': 3, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 4}\n",
      "INFO:d2go.modeling.backbone.fbnet_v2:Build FBNet using unified arch_def:\n",
      "bbox\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 184, 'stride': 2, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 0}\n",
      "- {'block_op': 'ir_k3_se', 'block_cfg': {'out_channels': 184, 'stride': 1, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 1}\n",
      "- {'block_op': 'ir_k3_se', 'block_cfg': {'out_channels': 184, 'stride': 1, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 2}\n",
      "- {'block_op': 'ir_k3_se', 'block_cfg': {'out_channels': 184, 'stride': 1, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 3}\n",
      "- {'block_op': 'ir_k3_se', 'block_cfg': {'out_channels': 184, 'stride': 1, 'expansion': 4, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 4}\n",
      "- {'block_op': 'ir_k5_se', 'block_cfg': {'out_channels': 200, 'stride': 1, 'expansion': 6, 'less_se_channels': False}, 'stage_idx': 0, 'block_idx': 5}\n",
      "INFO:d2go.modeling.model_ema:Using Model EMA.\n",
      "INFO:fvcore.common.checkpoint:[Checkpointer] Loading from https://mobile-cv.s3-us-west-2.amazonaws.com/d2go/models/268421013/model_final.pth ...\n",
      "INFO:iopath.common.file_io:URL https://mobile-cv.s3-us-west-2.amazonaws.com/d2go/models/268421013/model_final.pth cached in /home/snowytiger/.torch/iopath_cache/d2go/models/268421013/model_final.pth\n",
      "INFO:detectron2.checkpoint.c2_model_loading:Following weights matched with model:\n",
      "| Names in Model                                                        | Names in Checkpoint                                                                                                     | Shapes                             |\n",
      "|:----------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------|:-----------------------------------|\n",
      "| backbone.body.trunk0.fbnetv2_0_0.bn.*                                 | backbone.body.trunk0.fbnetv2_0_0.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                          | (16,) () (16,) (16,) (16,)         |\n",
      "| backbone.body.trunk0.fbnetv2_0_0.conv.*                               | backbone.body.trunk0.fbnetv2_0_0.conv.{bias,weight}                                                                     | (16,) (16,3,3,3)                   |\n",
      "| backbone.body.trunk0.fbnetv2_0_1.dw.conv.weight                       | backbone.body.trunk0.fbnetv2_0_1.dw.conv.weight                                                                         | (16, 1, 3, 3)                      |\n",
      "| backbone.body.trunk0.fbnetv2_0_1.pwl.bn.*                             | backbone.body.trunk0.fbnetv2_0_1.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (16,) () (16,) (16,) (16,)         |\n",
      "| backbone.body.trunk0.fbnetv2_0_1.pwl.conv.weight                      | backbone.body.trunk0.fbnetv2_0_1.pwl.conv.weight                                                                        | (16, 16, 1, 1)                     |\n",
      "| backbone.body.trunk0.fbnetv2_0_2.dw.conv.weight                       | backbone.body.trunk0.fbnetv2_0_2.dw.conv.weight                                                                         | (16, 1, 3, 3)                      |\n",
      "| backbone.body.trunk0.fbnetv2_0_2.pwl.bn.*                             | backbone.body.trunk0.fbnetv2_0_2.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (16,) () (16,) (16,) (16,)         |\n",
      "| backbone.body.trunk0.fbnetv2_0_2.pwl.conv.weight                      | backbone.body.trunk0.fbnetv2_0_2.pwl.conv.weight                                                                        | (16, 16, 1, 1)                     |\n",
      "| backbone.body.trunk1.fbnetv2_1_0.dw.conv.weight                       | backbone.body.trunk1.fbnetv2_1_0.dw.conv.weight                                                                         | (64, 1, 5, 5)                      |\n",
      "| backbone.body.trunk1.fbnetv2_1_0.pw.bn.*                              | backbone.body.trunk1.fbnetv2_1_0.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (64,) () (64,) (64,) (64,)         |\n",
      "| backbone.body.trunk1.fbnetv2_1_0.pw.conv.weight                       | backbone.body.trunk1.fbnetv2_1_0.pw.conv.weight                                                                         | (64, 16, 1, 1)                     |\n",
      "| backbone.body.trunk1.fbnetv2_1_0.pwl.bn.*                             | backbone.body.trunk1.fbnetv2_1_0.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (24,) () (24,) (24,) (24,)         |\n",
      "| backbone.body.trunk1.fbnetv2_1_0.pwl.conv.weight                      | backbone.body.trunk1.fbnetv2_1_0.pwl.conv.weight                                                                        | (24, 64, 1, 1)                     |\n",
      "| backbone.body.trunk1.fbnetv2_1_1.dw.conv.weight                       | backbone.body.trunk1.fbnetv2_1_1.dw.conv.weight                                                                         | (72, 1, 5, 5)                      |\n",
      "| backbone.body.trunk1.fbnetv2_1_1.pw.bn.*                              | backbone.body.trunk1.fbnetv2_1_1.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (72,) () (72,) (72,) (72,)         |\n",
      "| backbone.body.trunk1.fbnetv2_1_1.pw.conv.weight                       | backbone.body.trunk1.fbnetv2_1_1.pw.conv.weight                                                                         | (72, 24, 1, 1)                     |\n",
      "| backbone.body.trunk1.fbnetv2_1_1.pwl.bn.*                             | backbone.body.trunk1.fbnetv2_1_1.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (24,) () (24,) (24,) (24,)         |\n",
      "| backbone.body.trunk1.fbnetv2_1_1.pwl.conv.weight                      | backbone.body.trunk1.fbnetv2_1_1.pwl.conv.weight                                                                        | (24, 72, 1, 1)                     |\n",
      "| backbone.body.trunk1.fbnetv2_1_2.dw.conv.weight                       | backbone.body.trunk1.fbnetv2_1_2.dw.conv.weight                                                                         | (72, 1, 5, 5)                      |\n",
      "| backbone.body.trunk1.fbnetv2_1_2.pw.bn.*                              | backbone.body.trunk1.fbnetv2_1_2.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (72,) () (72,) (72,) (72,)         |\n",
      "| backbone.body.trunk1.fbnetv2_1_2.pw.conv.weight                       | backbone.body.trunk1.fbnetv2_1_2.pw.conv.weight                                                                         | (72, 24, 1, 1)                     |\n",
      "| backbone.body.trunk1.fbnetv2_1_2.pwl.bn.*                             | backbone.body.trunk1.fbnetv2_1_2.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (24,) () (24,) (24,) (24,)         |\n",
      "| backbone.body.trunk1.fbnetv2_1_2.pwl.conv.weight                      | backbone.body.trunk1.fbnetv2_1_2.pwl.conv.weight                                                                        | (24, 72, 1, 1)                     |\n",
      "| backbone.body.trunk1.fbnetv2_1_3.dw.conv.weight                       | backbone.body.trunk1.fbnetv2_1_3.dw.conv.weight                                                                         | (72, 1, 5, 5)                      |\n",
      "| backbone.body.trunk1.fbnetv2_1_3.pw.bn.*                              | backbone.body.trunk1.fbnetv2_1_3.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (72,) () (72,) (72,) (72,)         |\n",
      "| backbone.body.trunk1.fbnetv2_1_3.pw.conv.weight                       | backbone.body.trunk1.fbnetv2_1_3.pw.conv.weight                                                                         | (72, 24, 1, 1)                     |\n",
      "| backbone.body.trunk1.fbnetv2_1_3.pwl.bn.*                             | backbone.body.trunk1.fbnetv2_1_3.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (24,) () (24,) (24,) (24,)         |\n",
      "| backbone.body.trunk1.fbnetv2_1_3.pwl.conv.weight                      | backbone.body.trunk1.fbnetv2_1_3.pwl.conv.weight                                                                        | (24, 72, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_0.dw.conv.weight                       | backbone.body.trunk2.fbnetv2_2_0.dw.conv.weight                                                                         | (96, 1, 5, 5)                      |\n",
      "| backbone.body.trunk2.fbnetv2_2_0.pw.bn.*                              | backbone.body.trunk2.fbnetv2_2_0.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (96,) () (96,) (96,) (96,)         |\n",
      "| backbone.body.trunk2.fbnetv2_2_0.pw.conv.weight                       | backbone.body.trunk2.fbnetv2_2_0.pw.conv.weight                                                                         | (96, 24, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_0.pwl.bn.*                             | backbone.body.trunk2.fbnetv2_2_0.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (32,) () (32,) (32,) (32,)         |\n",
      "| backbone.body.trunk2.fbnetv2_2_0.pwl.conv.weight                      | backbone.body.trunk2.fbnetv2_2_0.pwl.conv.weight                                                                        | (32, 96, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_0.se.se.0.conv.*                       | backbone.body.trunk2.fbnetv2_2_0.se.se.0.conv.{bias,weight}                                                             | (24,) (24,96,1,1)                  |\n",
      "| backbone.body.trunk2.fbnetv2_2_0.se.se.1.*                            | backbone.body.trunk2.fbnetv2_2_0.se.se.1.{bias,weight}                                                                  | (96,) (96,24,1,1)                  |\n",
      "| backbone.body.trunk2.fbnetv2_2_1.dw.conv.weight                       | backbone.body.trunk2.fbnetv2_2_1.dw.conv.weight                                                                         | (96, 1, 3, 3)                      |\n",
      "| backbone.body.trunk2.fbnetv2_2_1.pw.bn.*                              | backbone.body.trunk2.fbnetv2_2_1.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (96,) () (96,) (96,) (96,)         |\n",
      "| backbone.body.trunk2.fbnetv2_2_1.pw.conv.weight                       | backbone.body.trunk2.fbnetv2_2_1.pw.conv.weight                                                                         | (96, 32, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_1.pwl.bn.*                             | backbone.body.trunk2.fbnetv2_2_1.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (32,) () (32,) (32,) (32,)         |\n",
      "| backbone.body.trunk2.fbnetv2_2_1.pwl.conv.weight                      | backbone.body.trunk2.fbnetv2_2_1.pwl.conv.weight                                                                        | (32, 96, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_1.se.se.0.conv.*                       | backbone.body.trunk2.fbnetv2_2_1.se.se.0.conv.{bias,weight}                                                             | (24,) (24,96,1,1)                  |\n",
      "| backbone.body.trunk2.fbnetv2_2_1.se.se.1.*                            | backbone.body.trunk2.fbnetv2_2_1.se.se.1.{bias,weight}                                                                  | (96,) (96,24,1,1)                  |\n",
      "| backbone.body.trunk2.fbnetv2_2_2.dw.conv.weight                       | backbone.body.trunk2.fbnetv2_2_2.dw.conv.weight                                                                         | (96, 1, 3, 3)                      |\n",
      "| backbone.body.trunk2.fbnetv2_2_2.pw.bn.*                              | backbone.body.trunk2.fbnetv2_2_2.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (96,) () (96,) (96,) (96,)         |\n",
      "| backbone.body.trunk2.fbnetv2_2_2.pw.conv.weight                       | backbone.body.trunk2.fbnetv2_2_2.pw.conv.weight                                                                         | (96, 32, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_2.pwl.bn.*                             | backbone.body.trunk2.fbnetv2_2_2.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (32,) () (32,) (32,) (32,)         |\n",
      "| backbone.body.trunk2.fbnetv2_2_2.pwl.conv.weight                      | backbone.body.trunk2.fbnetv2_2_2.pwl.conv.weight                                                                        | (32, 96, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_2.se.se.0.conv.*                       | backbone.body.trunk2.fbnetv2_2_2.se.se.0.conv.{bias,weight}                                                             | (24,) (24,96,1,1)                  |\n",
      "| backbone.body.trunk2.fbnetv2_2_2.se.se.1.*                            | backbone.body.trunk2.fbnetv2_2_2.se.se.1.{bias,weight}                                                                  | (96,) (96,24,1,1)                  |\n",
      "| backbone.body.trunk2.fbnetv2_2_3.dw.conv.weight                       | backbone.body.trunk2.fbnetv2_2_3.dw.conv.weight                                                                         | (96, 1, 3, 3)                      |\n",
      "| backbone.body.trunk2.fbnetv2_2_3.pw.bn.*                              | backbone.body.trunk2.fbnetv2_2_3.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (96,) () (96,) (96,) (96,)         |\n",
      "| backbone.body.trunk2.fbnetv2_2_3.pw.conv.weight                       | backbone.body.trunk2.fbnetv2_2_3.pw.conv.weight                                                                         | (96, 32, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_3.pwl.bn.*                             | backbone.body.trunk2.fbnetv2_2_3.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (32,) () (32,) (32,) (32,)         |\n",
      "| backbone.body.trunk2.fbnetv2_2_3.pwl.conv.weight                      | backbone.body.trunk2.fbnetv2_2_3.pwl.conv.weight                                                                        | (32, 96, 1, 1)                     |\n",
      "| backbone.body.trunk2.fbnetv2_2_3.se.se.0.conv.*                       | backbone.body.trunk2.fbnetv2_2_3.se.se.0.conv.{bias,weight}                                                             | (24,) (24,96,1,1)                  |\n",
      "| backbone.body.trunk2.fbnetv2_2_3.se.se.1.*                            | backbone.body.trunk2.fbnetv2_2_3.se.se.1.{bias,weight}                                                                  | (96,) (96,24,1,1)                  |\n",
      "| backbone.body.trunk3.fbnetv2_3_0.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_0.dw.conv.weight                                                                         | (128, 1, 5, 5)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_0.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_0.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (128,) () (128,) (128,) (128,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_0.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_0.pw.conv.weight                                                                         | (128, 32, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_0.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_0.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (64,) () (64,) (64,) (64,)         |\n",
      "| backbone.body.trunk3.fbnetv2_3_0.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_0.pwl.conv.weight                                                                        | (64, 128, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_1.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_1.dw.conv.weight                                                                         | (192, 1, 3, 3)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_1.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_1.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (192,) () (192,) (192,) (192,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_1.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_1.pw.conv.weight                                                                         | (192, 64, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_1.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_1.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (64,) () (64,) (64,) (64,)         |\n",
      "| backbone.body.trunk3.fbnetv2_3_1.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_1.pwl.conv.weight                                                                        | (64, 192, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_2.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_2.dw.conv.weight                                                                         | (192, 1, 3, 3)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_2.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_2.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (192,) () (192,) (192,) (192,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_2.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_2.pw.conv.weight                                                                         | (192, 64, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_2.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_2.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (64,) () (64,) (64,) (64,)         |\n",
      "| backbone.body.trunk3.fbnetv2_3_2.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_2.pwl.conv.weight                                                                        | (64, 192, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_3.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_3.dw.conv.weight                                                                         | (192, 1, 3, 3)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_3.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_3.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (192,) () (192,) (192,) (192,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_3.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_3.pw.conv.weight                                                                         | (192, 64, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_3.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_3.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (64,) () (64,) (64,) (64,)         |\n",
      "| backbone.body.trunk3.fbnetv2_3_3.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_3.pwl.conv.weight                                                                        | (64, 192, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_4.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_4.dw.conv.weight                                                                         | (256, 1, 5, 5)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_4.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_4.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (256,) () (256,) (256,) (256,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_4.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_4.pw.conv.weight                                                                         | (256, 64, 1, 1)                    |\n",
      "| backbone.body.trunk3.fbnetv2_3_4.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_4.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (112,) () (112,) (112,) (112,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_4.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_4.pwl.conv.weight                                                                        | (112, 256, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_4.se.se.0.conv.*                       | backbone.body.trunk3.fbnetv2_3_4.se.se.0.conv.{bias,weight}                                                             | (64,) (64,256,1,1)                 |\n",
      "| backbone.body.trunk3.fbnetv2_3_4.se.se.1.*                            | backbone.body.trunk3.fbnetv2_3_4.se.se.1.{bias,weight}                                                                  | (256,) (256,64,1,1)                |\n",
      "| backbone.body.trunk3.fbnetv2_3_5.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_5.dw.conv.weight                                                                         | (336, 1, 5, 5)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_5.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_5.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (336,) () (336,) (336,) (336,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_5.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_5.pw.conv.weight                                                                         | (336, 112, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_5.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_5.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (112,) () (112,) (112,) (112,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_5.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_5.pwl.conv.weight                                                                        | (112, 336, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_5.se.se.0.conv.*                       | backbone.body.trunk3.fbnetv2_3_5.se.se.0.conv.{bias,weight}                                                             | (88,) (88,336,1,1)                 |\n",
      "| backbone.body.trunk3.fbnetv2_3_5.se.se.1.*                            | backbone.body.trunk3.fbnetv2_3_5.se.se.1.{bias,weight}                                                                  | (336,) (336,88,1,1)                |\n",
      "| backbone.body.trunk3.fbnetv2_3_6.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_6.dw.conv.weight                                                                         | (336, 1, 5, 5)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_6.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_6.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (336,) () (336,) (336,) (336,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_6.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_6.pw.conv.weight                                                                         | (336, 112, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_6.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_6.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (112,) () (112,) (112,) (112,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_6.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_6.pwl.conv.weight                                                                        | (112, 336, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_6.se.se.0.conv.*                       | backbone.body.trunk3.fbnetv2_3_6.se.se.0.conv.{bias,weight}                                                             | (88,) (88,336,1,1)                 |\n",
      "| backbone.body.trunk3.fbnetv2_3_6.se.se.1.*                            | backbone.body.trunk3.fbnetv2_3_6.se.se.1.{bias,weight}                                                                  | (336,) (336,88,1,1)                |\n",
      "| backbone.body.trunk3.fbnetv2_3_7.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_7.dw.conv.weight                                                                         | (336, 1, 5, 5)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_7.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_7.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (336,) () (336,) (336,) (336,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_7.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_7.pw.conv.weight                                                                         | (336, 112, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_7.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_7.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (112,) () (112,) (112,) (112,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_7.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_7.pwl.conv.weight                                                                        | (112, 336, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_7.se.se.0.conv.*                       | backbone.body.trunk3.fbnetv2_3_7.se.se.0.conv.{bias,weight}                                                             | (88,) (88,336,1,1)                 |\n",
      "| backbone.body.trunk3.fbnetv2_3_7.se.se.1.*                            | backbone.body.trunk3.fbnetv2_3_7.se.se.1.{bias,weight}                                                                  | (336,) (336,88,1,1)                |\n",
      "| backbone.body.trunk3.fbnetv2_3_8.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_8.dw.conv.weight                                                                         | (336, 1, 5, 5)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_8.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_8.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (336,) () (336,) (336,) (336,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_8.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_8.pw.conv.weight                                                                         | (336, 112, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_8.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_8.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (112,) () (112,) (112,) (112,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_8.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_8.pwl.conv.weight                                                                        | (112, 336, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_8.se.se.0.conv.*                       | backbone.body.trunk3.fbnetv2_3_8.se.se.0.conv.{bias,weight}                                                             | (88,) (88,336,1,1)                 |\n",
      "| backbone.body.trunk3.fbnetv2_3_8.se.se.1.*                            | backbone.body.trunk3.fbnetv2_3_8.se.se.1.{bias,weight}                                                                  | (336,) (336,88,1,1)                |\n",
      "| backbone.body.trunk3.fbnetv2_3_9.dw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_9.dw.conv.weight                                                                         | (336, 1, 5, 5)                     |\n",
      "| backbone.body.trunk3.fbnetv2_3_9.pw.bn.*                              | backbone.body.trunk3.fbnetv2_3_9.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                       | (336,) () (336,) (336,) (336,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_9.pw.conv.weight                       | backbone.body.trunk3.fbnetv2_3_9.pw.conv.weight                                                                         | (336, 112, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_9.pwl.bn.*                             | backbone.body.trunk3.fbnetv2_3_9.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}                      | (112,) () (112,) (112,) (112,)     |\n",
      "| backbone.body.trunk3.fbnetv2_3_9.pwl.conv.weight                      | backbone.body.trunk3.fbnetv2_3_9.pwl.conv.weight                                                                        | (112, 336, 1, 1)                   |\n",
      "| backbone.body.trunk3.fbnetv2_3_9.se.se.0.conv.*                       | backbone.body.trunk3.fbnetv2_3_9.se.se.0.conv.{bias,weight}                                                             | (88,) (88,336,1,1)                 |\n",
      "| backbone.body.trunk3.fbnetv2_3_9.se.se.1.*                            | backbone.body.trunk3.fbnetv2_3_9.se.se.1.{bias,weight}                                                                  | (336,) (336,88,1,1)                |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.dw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.dw.conv.weight                                                    | (336, 1, 5, 5)                     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.pw.bn.*         | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}  | (336,) () (336,) (336,) (336,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.pw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.pw.conv.weight                                                    | (336, 112, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.pwl.bn.*        | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight} | (112,) () (112,) (112,) (112,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.pwl.conv.weight | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.pwl.conv.weight                                                   | (112, 336, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.se.se.0.conv.*  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.se.se.0.conv.{bias,weight}                                        | (88,) (88,336,1,1)                 |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.se.se.1.*       | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_0.se.se.1.{bias,weight}                                             | (336,) (336,88,1,1)                |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.dw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.dw.conv.weight                                                    | (336, 1, 5, 5)                     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.pw.bn.*         | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}  | (336,) () (336,) (336,) (336,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.pw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.pw.conv.weight                                                    | (336, 112, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.pwl.bn.*        | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight} | (112,) () (112,) (112,) (112,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.pwl.conv.weight | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.pwl.conv.weight                                                   | (112, 336, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.se.se.0.conv.*  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.se.se.0.conv.{bias,weight}                                        | (88,) (88,336,1,1)                 |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.se.se.1.*       | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_1.se.se.1.{bias,weight}                                             | (336,) (336,88,1,1)                |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.dw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.dw.conv.weight                                                    | (336, 1, 5, 5)                     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.pw.bn.*         | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}  | (336,) () (336,) (336,) (336,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.pw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.pw.conv.weight                                                    | (336, 112, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.pwl.bn.*        | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight} | (112,) () (112,) (112,) (112,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.pwl.conv.weight | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.pwl.conv.weight                                                   | (112, 336, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.se.se.0.conv.*  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.se.se.0.conv.{bias,weight}                                        | (88,) (88,336,1,1)                 |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.se.se.1.*       | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_2.se.se.1.{bias,weight}                                             | (336,) (336,88,1,1)                |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.dw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.dw.conv.weight                                                    | (336, 1, 5, 5)                     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.pw.bn.*         | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}  | (336,) () (336,) (336,) (336,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.pw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.pw.conv.weight                                                    | (336, 112, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.pwl.bn.*        | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight} | (112,) () (112,) (112,) (112,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.pwl.conv.weight | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.pwl.conv.weight                                                   | (112, 336, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.se.se.0.conv.*  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.se.se.0.conv.{bias,weight}                                        | (88,) (88,336,1,1)                 |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.se.se.1.*       | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_3.se.se.1.{bias,weight}                                             | (336,) (336,88,1,1)                |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.dw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.dw.conv.weight                                                    | (336, 1, 5, 5)                     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.pw.bn.*         | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}  | (336,) () (336,) (336,) (336,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.pw.conv.weight  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.pw.conv.weight                                                    | (336, 112, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.pwl.bn.*        | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight} | (112,) () (112,) (112,) (112,)     |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.pwl.conv.weight | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.pwl.conv.weight                                                   | (112, 336, 1, 1)                   |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.se.se.0.conv.*  | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.se.se.0.conv.{bias,weight}                                        | (88,) (88,336,1,1)                 |\n",
      "| proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.se.se.1.*       | proposal_generator.rpn_head.rpn_feature.0.fbnetv2_0_4.se.se.1.{bias,weight}                                             | (336,) (336,88,1,1)                |\n",
      "| proposal_generator.rpn_head.rpn_regressor.bbox_pred.*                 | proposal_generator.rpn_head.rpn_regressor.bbox_pred.{bias,weight}                                                       | (60,) (60,112,1,1)                 |\n",
      "| proposal_generator.rpn_head.rpn_regressor.cls_logits.*                | proposal_generator.rpn_head.rpn_regressor.cls_logits.{bias,weight}                                                      | (15,) (15,112,1,1)                 |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.dw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.dw.conv.weight                                                            | (448, 1, 5, 5)                     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.pw.bn.*                 | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}          | (448,) () (448,) (448,) (448,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.pw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.pw.conv.weight                                                            | (448, 112, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.pwl.bn.*                | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}         | (184,) () (184,) (184,) (184,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.pwl.conv.weight         | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.pwl.conv.weight                                                           | (184, 448, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.se.se.0.conv.*          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.se.se.0.conv.{bias,weight}                                                | (112,) (112,448,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.se.se.1.*               | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_0.se.se.1.{bias,weight}                                                     | (448,) (448,112,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.dw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.dw.conv.weight                                                            | (736, 1, 3, 3)                     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.pw.bn.*                 | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}          | (736,) () (736,) (736,) (736,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.pw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.pw.conv.weight                                                            | (736, 184, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.pwl.bn.*                | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}         | (184,) () (184,) (184,) (184,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.pwl.conv.weight         | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.pwl.conv.weight                                                           | (184, 736, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.se.se.0.conv.*          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.se.se.0.conv.{bias,weight}                                                | (184,) (184,736,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.se.se.1.*               | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_1.se.se.1.{bias,weight}                                                     | (736,) (736,184,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.dw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.dw.conv.weight                                                            | (736, 1, 3, 3)                     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.pw.bn.*                 | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}          | (736,) () (736,) (736,) (736,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.pw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.pw.conv.weight                                                            | (736, 184, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.pwl.bn.*                | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}         | (184,) () (184,) (184,) (184,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.pwl.conv.weight         | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.pwl.conv.weight                                                           | (184, 736, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.se.se.0.conv.*          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.se.se.0.conv.{bias,weight}                                                | (184,) (184,736,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.se.se.1.*               | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_2.se.se.1.{bias,weight}                                                     | (736,) (736,184,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.dw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.dw.conv.weight                                                            | (736, 1, 3, 3)                     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.pw.bn.*                 | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}          | (736,) () (736,) (736,) (736,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.pw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.pw.conv.weight                                                            | (736, 184, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.pwl.bn.*                | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}         | (184,) () (184,) (184,) (184,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.pwl.conv.weight         | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.pwl.conv.weight                                                           | (184, 736, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.se.se.0.conv.*          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.se.se.0.conv.{bias,weight}                                                | (184,) (184,736,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.se.se.1.*               | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_3.se.se.1.{bias,weight}                                                     | (736,) (736,184,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.dw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.dw.conv.weight                                                            | (736, 1, 3, 3)                     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.pw.bn.*                 | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}          | (736,) () (736,) (736,) (736,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.pw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.pw.conv.weight                                                            | (736, 184, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.pwl.bn.*                | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}         | (184,) () (184,) (184,) (184,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.pwl.conv.weight         | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.pwl.conv.weight                                                           | (184, 736, 1, 1)                   |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.se.se.0.conv.*          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.se.se.0.conv.{bias,weight}                                                | (184,) (184,736,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.se.se.1.*               | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_4.se.se.1.{bias,weight}                                                     | (736,) (736,184,1,1)               |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.dw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.dw.conv.weight                                                            | (1104, 1, 5, 5)                    |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.pw.bn.*                 | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.pw.bn.{bias,num_batches_tracked,running_mean,running_var,weight}          | (1104,) () (1104,) (1104,) (1104,) |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.pw.conv.weight          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.pw.conv.weight                                                            | (1104, 184, 1, 1)                  |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.pwl.bn.*                | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.pwl.bn.{bias,num_batches_tracked,running_mean,running_var,weight}         | (200,) () (200,) (200,) (200,)     |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.pwl.conv.weight         | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.pwl.conv.weight                                                           | (200, 1104, 1, 1)                  |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.se.se.0.conv.*          | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.se.se.0.conv.{bias,weight}                                                | (280,) (280,1104,1,1)              |\n",
      "| roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.se.se.1.*               | roi_heads.box_head.roi_box_conv.0.fbnetv2_0_5.se.se.1.{bias,weight}                                                     | (1104,) (1104,280,1,1)             |\n",
      "| roi_heads.box_predictor.bbox_pred.*                                   | roi_heads.box_predictor.bbox_pred.{bias,weight}                                                                         | (320,) (320,200)                   |\n",
      "| roi_heads.box_predictor.cls_score.*                                   | roi_heads.box_predictor.cls_score.{bias,weight}                                                                         | (81,) (81,200)                     |\n",
      "WARNING:fvcore.common.checkpoint:The checkpoint state_dict contains keys that are not used by the model:\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_0.dw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_0.pw.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_0.pw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_0.pwl.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_0.pwl.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_1.dw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_1.pw.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_1.pw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_1.pwl.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_1.pwl.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_2.dw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_2.pw.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_2.pw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_2.pwl.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_2.pwl.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_3.dw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_3.pw.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_3.pw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_3.pwl.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_3.pwl.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_4.dw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_4.pw.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_4.pw.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_4.pwl.bn.{bias, num_batches_tracked, running_mean, running_var, weight}\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.feature_extractor.0.fbnetv2_0_4.pwl.conv.weight\u001b[0m\n",
      "  \u001b[35mroi_heads.mask_head.predictor.mask_fcn_logits.{bias, weight}\u001b[0m\n"
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
     ]
    }
   ],
   "source": [
    "from d2go.model_zoo import model_zoo\n",
    "model = model_zoo.get('faster_rcnn_fbnetv3a_C4.yaml', trained=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "- Download an image from the COCO dataset:"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
341
   "execution_count": null,
342
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
343
   "outputs": [],
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
   "source": [
    "import cv2\n",
    "from matplotlib import pyplot as plt\n",
    "!wget http://images.cocodataset.org/val2017/000000439715.jpg -q -O input.jpg\n",
    "im = cv2.imread(\"./input.jpg\")\n",
    "plt.imshow(im)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "- Then we can create a `DemoPredictor` to run inference on this image and see the raw outputs:"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
361
   "execution_count": null,
362
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
363
   "outputs": [],
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
   "source": [
    "from d2go.utils.demo_predictor import DemoPredictor\n",
    "predictor = DemoPredictor(model)\n",
    "outputs = predictor(im)\n",
    "# the output object categories and corresponding bounding boxes\n",
    "print(outputs[\"instances\"].pred_classes)\n",
    "print(outputs[\"instances\"].pred_boxes)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "- Let's visualize the output predictions"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
382
   "execution_count": null,
383
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
384
   "outputs": [],
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
   "source": [
    "from detectron2.utils.visualizer import Visualizer\n",
    "from detectron2.data import MetadataCatalog, DatasetCatalog\n",
    "\n",
    "v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(\"coco_2017_train\"))\n",
    "out = v.draw_instance_predictions(outputs[\"instances\"].to(\"cpu\"))\n",
    "plt.imshow(out.get_image()[:, :, ::-1])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Train on a custom dataset\n",
    "In this section, we show how to train a d2go model on a custom dataset.\n",
    "\n",
    "We use [the balloon segmentation dataset](https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon)\n",
    "which only has one class: balloon.\n",
    "We'll train a balloon segmentation model from an existing model pre-trained on COCO dataset, available in d2go's [model zoo](https://github.com/facebookresearch/d2go/blob/master/MODEL_ZOO.md).\n",
    "\n",
    "### Prepare the dataset"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
410
   "execution_count": null,
411
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
412
   "outputs": [],
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
   "source": [
    "# download, decompress the data\n",
    "!wget https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip\n",
    "!unzip -o balloon_dataset.zip > /dev/null"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "D2Go is built on top of detectron2. Let's register the balloon dataset to detectron2, following the [detectron2 custom dataset tutorial](https://detectron2.readthedocs.io/tutorials/datasets.html).\n",
    "Here, the dataset is in its custom format, therefore we write a function to parse it and prepare it into detectron2's standard format. User should write such a function when using a dataset in custom format. See the tutorial for more details."
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
429
   "execution_count": null,
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
   "metadata": {},
   "outputs": [],
   "source": [
    "# if your dataset is in COCO format, this cell can be replaced by the following three lines:\n",
    "# from detectron2.data.datasets import register_coco_instances\n",
    "# register_coco_instances(\"my_dataset_train\", {}, \"json_annotation_train.json\", \"path/to/image/dir\")\n",
    "# register_coco_instances(\"my_dataset_val\", {}, \"json_annotation_val.json\", \"path/to/image/dir\")\n",
    "import os\n",
    "import json\n",
    "import numpy as np\n",
    "from detectron2.structures import BoxMode\n",
    "\n",
    "def get_balloon_dicts(img_dir):\n",
    "    json_file = os.path.join(img_dir, \"via_region_data.json\")\n",
    "    with open(json_file) as f:\n",
    "        imgs_anns = json.load(f)\n",
    "\n",
    "    dataset_dicts = []\n",
    "    for idx, v in enumerate(imgs_anns.values()):\n",
    "        record = {}\n",
    "        \n",
    "        filename = os.path.join(img_dir, v[\"filename\"])\n",
    "        height, width = cv2.imread(filename).shape[:2]\n",
    "        \n",
    "        record[\"file_name\"] = filename\n",
    "        record[\"image_id\"] = idx\n",
    "        record[\"height\"] = height\n",
    "        record[\"width\"] = width\n",
    "      \n",
    "        annos = v[\"regions\"]\n",
    "        objs = []\n",
    "        for _, anno in annos.items():\n",
    "            assert not anno[\"region_attributes\"]\n",
    "            anno = anno[\"shape_attributes\"]\n",
    "            px = anno[\"all_points_x\"]\n",
    "            py = anno[\"all_points_y\"]\n",
    "            poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]\n",
    "            poly = [p for x in poly for p in x]\n",
    "\n",
    "            obj = {\n",
    "                \"bbox\": [np.min(px), np.min(py), np.max(px), np.max(py)],\n",
    "                \"bbox_mode\": BoxMode.XYXY_ABS,\n",
    "                \"segmentation\": [poly],\n",
    "                \"category_id\": 0,\n",
    "            }\n",
    "            objs.append(obj)\n",
    "        record[\"annotations\"] = objs\n",
    "        dataset_dicts.append(record)\n",
    "    return dataset_dicts\n",
    "\n",
    "for d in [\"train\", \"val\"]:\n",
    "    DatasetCatalog.register(\"balloon_\" + d, lambda d=d: get_balloon_dicts(\"balloon/\" + d))\n",
    "    MetadataCatalog.get(\"balloon_\" + d).set(thing_classes=[\"balloon\"], evaluator_type=\"coco\")\n",
    "balloon_metadata = MetadataCatalog.get(\"balloon_train\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To verify the data loading is correct, let's visualize the annotations of randomly selected samples in the training set:"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
495
   "execution_count": null,
496
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
497
   "outputs": [],
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
   "source": [
    "import random\n",
    "\n",
    "dataset_dicts = get_balloon_dicts(\"balloon/train\")\n",
    "for d in random.sample(dataset_dicts, 3):\n",
    "    img = cv2.imread(d[\"file_name\"])\n",
    "    visualizer = Visualizer(img[:, :, ::-1], metadata=balloon_metadata, scale=0.5)\n",
    "    out = visualizer.draw_dataset_dict(d)\n",
    "    plt.figure()\n",
    "    plt.imshow(out.get_image()[:, :, ::-1])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Train\n",
    "Now, let's fine-tune a COCO-pretrained FBNetV3A Mask R-CNN model on the balloon dataset."
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
520
   "execution_count": null,
521
522
523
524
525
526
527
528
529
   "metadata": {},
   "outputs": [],
   "source": [
    "for d in [\"train\", \"val\"]:\n",
    "    MetadataCatalog.get(\"balloon_\" + d).set(thing_classes=[\"balloon\"], evaluator_type=\"coco\")"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
530
   "execution_count": null,
531
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
532
   "outputs": [],
533
   "source": [
534
    "from d2go.runner import GeneralizedRCNNRunner\n",
535
536
537
    "\n",
    "\n",
    "def prepare_for_launch():\n",
538
    "    runner = GeneralizedRCNNRunner()\n",
539
540
541
542
543
544
545
546
547
    "    cfg = runner.get_default_cfg()\n",
    "    cfg.merge_from_file(model_zoo.get_config_file(\"faster_rcnn_fbnetv3a_C4.yaml\"))\n",
    "    cfg.MODEL_EMA.ENABLED = False\n",
    "    cfg.DATASETS.TRAIN = (\"balloon_train\",)\n",
    "    cfg.DATASETS.TEST = (\"balloon_val\",)\n",
    "    cfg.DATALOADER.NUM_WORKERS = 2\n",
    "    cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(\"faster_rcnn_fbnetv3a_C4.yaml\")  # Let training initialize from model zoo\n",
    "    cfg.SOLVER.IMS_PER_BATCH = 2\n",
    "    cfg.SOLVER.BASE_LR = 0.00025  # pick a good LR\n",
TannerGilbert's avatar
TannerGilbert committed
548
    "    cfg.SOLVER.MAX_ITER = 600    # 600 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset\n",
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    "    cfg.SOLVER.STEPS = []        # do not decay learning rate\n",
    "    cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128   # faster, and good enough for this toy dataset (default: 512)\n",
    "    cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1  # only has one class (ballon). (see https://detectron2.readthedocs.io/tutorials/datasets.html#update-the-config-for-new-datasets)\n",
    "    # NOTE: this config means the number of classes, but a few popular unofficial tutorials incorrect uses num_classes+1 here.\n",
    "    os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)\n",
    "    return cfg, runner\n",
    "\n",
    "cfg, runner = prepare_for_launch()\n",
    "model = runner.build_model(cfg)\n",
    "runner.do_train(cfg, model, resume=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference & evaluation using the trained model\n",
    "Now, let's run inference with the trained model on the balloon validation dataset."
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
571
   "execution_count": null,
572
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
573
   "outputs": [],
574
575
576
577
578
579
580
581
582
583
584
585
586
   "source": [
    "metrics = runner.do_test(cfg, model)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The evaluation results are"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
587
   "execution_count": null,
588
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
589
   "outputs": [],
590
591
592
593
594
595
596
597
598
   "source": [
    "print(metrics)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Export to Int8 Model\n",
TannerGilbert's avatar
TannerGilbert committed
599
    "This section export int8 models using post-training quantization. For quantization-aware training, please see the [instructions](https://github.com/facebookresearch/d2go/tree/master/demo#quantization-aware-training)."
600
601
602
603
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
604
   "execution_count": null,
605
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
606
   "outputs": [],
607
608
609
   "source": [
    "import copy\n",
    "from detectron2.data import build_detection_test_loader\n",
Anthony Dito's avatar
Anthony Dito committed
610
    "from d2go.export.exporter import convert_and_export_predictor\n",
Yanghan Wang's avatar
Yanghan Wang committed
611
    "from d2go.utils.testing.data_loader_helper import create_detection_data_loader_on_toy_dataset\n",
612
613
614
615
616
617
618
619
620
621
622
    "from d2go.export.d2_meta_arch import patch_d2_meta_arch\n",
    "\n",
    "import logging\n",
    "\n",
    "# disable all the warnings\n",
    "previous_level = logging.root.manager.disable\n",
    "logging.disable(logging.INFO)\n",
    "\n",
    "patch_d2_meta_arch()\n",
    "\n",
    "cfg_name = 'faster_rcnn_fbnetv3a_dsmask_C4.yaml'\n",
623
624
    "pytorch_model = model_zoo.get(cfg_name, trained=True, device='cpu')\n",
    "pytorch_model.eval()\n",
Yanghan Wang's avatar
Yanghan Wang committed
625
    "cfg = model_zoo.get_config(cfg_name)\n",
626
    "\n",
Yanghan Wang's avatar
Yanghan Wang committed
627
    "with create_detection_data_loader_on_toy_dataset(cfg, 224, 320, is_train=False) as data_loader:\n",
628
    "    predictor_path = convert_and_export_predictor(\n",
Yanghan Wang's avatar
Yanghan Wang committed
629
    "            cfg,\n",
630
    "            copy.deepcopy(pytorch_model),\n",
631
    "            \"torchscript_int8\",\n",
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    "            './',\n",
    "            data_loader,\n",
    "        )\n",
    "\n",
    "# recover the logging level\n",
    "logging.disable(previous_level)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create the predictor using the exported int8 model"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
649
   "execution_count": null,
650
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
651
   "outputs": [],
652
653
654
655
656
657
658
659
660
661
662
663
664
665
   "source": [
    "from mobile_cv.predictor.api import create_predictor\n",
    "model = create_predictor(predictor_path)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Make predictions and Visualize the output"
   ]
  },
  {
   "cell_type": "code",
Yanghan Wang's avatar
Yanghan Wang committed
666
   "execution_count": null,
667
   "metadata": {},
Yanghan Wang's avatar
Yanghan Wang committed
668
   "outputs": [],
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
   "source": [
    "from d2go.utils.demo_predictor import DemoPredictor\n",
    "predictor = DemoPredictor(model)\n",
    "outputs = predictor(im)\n",
    "\n",
    "v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(\"coco_2017_train\"))\n",
    "out = v.draw_instance_predictions(outputs[\"instances\"].to(\"cpu\"))\n",
    "plt.imshow(out.get_image()[:, :, ::-1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
Yanghan Wang's avatar
Yanghan Wang committed
688
689
690
  "interpreter": {
   "hash": "517234ba8a8c2628fc901a4b482ee7ad83e05e3ca55f6d4e216a0b65fa2f59e9"
  },
691
  "kernelspec": {
Yanghan Wang's avatar
Yanghan Wang committed
692
   "display_name": "Python 3.9.13 ('d2go-x9zKx9Ui')",
693
694
695
696
697
698
699
700
701
702
703
704
705
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Yanghan Wang's avatar
Yanghan Wang committed
706
   "version": "3.9.13"
707
708
709
710
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
711
}