test_all.py 9.12 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import io
import unittest
from typing import List

Yanghan Wang's avatar
Yanghan Wang committed
7
8
import torch
from detr.hub import detr_resnet50, detr_resnet50_panoptic
facebook-github-bot's avatar
facebook-github-bot committed
9
from detr.models.backbone import Backbone
Yanghan Wang's avatar
Yanghan Wang committed
10
11
12
13
14
from detr.models.matcher import HungarianMatcher
from detr.models.position_encoding import (
    PositionEmbeddingSine,
    PositionEmbeddingLearned,
)
facebook-github-bot's avatar
facebook-github-bot committed
15
16
from detr.util import box_ops
from detr.util.misc import nested_tensor_from_tensor_list
Yanghan Wang's avatar
Yanghan Wang committed
17
from torch import nn, Tensor
facebook-github-bot's avatar
facebook-github-bot committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

# onnxruntime requires python 3.5 or above
try:
    import onnxruntime
except ImportError:
    onnxruntime = None


class Tester(unittest.TestCase):
    def test_box_cxcywh_to_xyxy(self):
        t = torch.rand(10, 4)
        r = box_ops.box_xyxy_to_cxcywh(box_ops.box_cxcywh_to_xyxy(t))
        self.assertLess((t - r).abs().max(), 1e-5)

    @staticmethod
    def indices_torch2python(indices):
        return [(i.tolist(), j.tolist()) for i, j in indices]

    def test_hungarian(self):
        n_queries, n_targets, n_classes = 100, 15, 91
        logits = torch.rand(1, n_queries, n_classes + 1)
        boxes = torch.rand(1, n_queries, 4)
        tgt_labels = torch.randint(high=n_classes, size=(n_targets,))
        tgt_boxes = torch.rand(n_targets, 4)
        matcher = HungarianMatcher()
Yanghan Wang's avatar
Yanghan Wang committed
43
44
45
46
47
48
49
50
51
        targets = [{"labels": tgt_labels, "boxes": tgt_boxes}]
        indices_single = matcher({"pred_logits": logits, "pred_boxes": boxes}, targets)
        indices_batched = matcher(
            {
                "pred_logits": logits.repeat(2, 1, 1),
                "pred_boxes": boxes.repeat(2, 1, 1),
            },
            targets * 2,
        )
facebook-github-bot's avatar
facebook-github-bot committed
52
53
        self.assertEqual(len(indices_single[0][0]), n_targets)
        self.assertEqual(len(indices_single[0][1]), n_targets)
Yanghan Wang's avatar
Yanghan Wang committed
54
55
56
57
58
59
60
61
        self.assertEqual(
            self.indices_torch2python(indices_single),
            self.indices_torch2python([indices_batched[0]]),
        )
        self.assertEqual(
            self.indices_torch2python(indices_single),
            self.indices_torch2python([indices_batched[1]]),
        )
facebook-github-bot's avatar
facebook-github-bot committed
62
63
64
65

        # test with empty targets
        tgt_labels_empty = torch.randint(high=n_classes, size=(0,))
        tgt_boxes_empty = torch.rand(0, 4)
Yanghan Wang's avatar
Yanghan Wang committed
66
67
68
69
70
71
72
73
        targets_empty = [{"labels": tgt_labels_empty, "boxes": tgt_boxes_empty}]
        indices = matcher(
            {
                "pred_logits": logits.repeat(2, 1, 1),
                "pred_boxes": boxes.repeat(2, 1, 1),
            },
            targets + targets_empty,
        )
facebook-github-bot's avatar
facebook-github-bot committed
74
        self.assertEqual(len(indices[1][0]), 0)
Yanghan Wang's avatar
Yanghan Wang committed
75
76
77
78
79
80
81
        indices = matcher(
            {
                "pred_logits": logits.repeat(2, 1, 1),
                "pred_boxes": boxes.repeat(2, 1, 1),
            },
            targets_empty * 2,
        )
facebook-github-bot's avatar
facebook-github-bot committed
82
83
84
85
86
87
88
        self.assertEqual(len(indices[0][0]), 0)

    def test_position_encoding_script(self):
        m1, m2 = PositionEmbeddingSine(), PositionEmbeddingLearned()
        mm1, mm2 = torch.jit.script(m1), torch.jit.script(m2)  # noqa

    def test_backbone_script(self):
Yanghan Wang's avatar
Yanghan Wang committed
89
        backbone = Backbone("resnet50", True, False, False)
facebook-github-bot's avatar
facebook-github-bot committed
90
91
92
93
94
        torch.jit.script(backbone)  # noqa

    def test_model_script_detection(self):
        model = detr_resnet50(pretrained=False).eval()
        scripted_model = torch.jit.script(model)
Yanghan Wang's avatar
Yanghan Wang committed
95
96
97
        x = nested_tensor_from_tensor_list(
            [torch.rand(3, 200, 200), torch.rand(3, 200, 250)]
        )
facebook-github-bot's avatar
facebook-github-bot committed
98
99
100
101
102
103
104
105
        out = model(x)
        out_script = scripted_model(x)
        self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
        self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))

    def test_model_script_panoptic(self):
        model = detr_resnet50_panoptic(pretrained=False).eval()
        scripted_model = torch.jit.script(model)
Yanghan Wang's avatar
Yanghan Wang committed
106
107
108
        x = nested_tensor_from_tensor_list(
            [torch.rand(3, 200, 200), torch.rand(3, 200, 250)]
        )
facebook-github-bot's avatar
facebook-github-bot committed
109
110
111
112
113
114
115
116
117
        out = model(x)
        out_script = scripted_model(x)
        self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
        self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))
        self.assertTrue(out["pred_masks"].equal(out_script["pred_masks"]))

    def test_model_detection_different_inputs(self):
        model = detr_resnet50(pretrained=False).eval()
        # support NestedTensor
Yanghan Wang's avatar
Yanghan Wang committed
118
119
120
        x = nested_tensor_from_tensor_list(
            [torch.rand(3, 200, 200), torch.rand(3, 200, 250)]
        )
facebook-github-bot's avatar
facebook-github-bot committed
121
        out = model(x)
Yanghan Wang's avatar
Yanghan Wang committed
122
        self.assertIn("pred_logits", out)
facebook-github-bot's avatar
facebook-github-bot committed
123
124
125
        # and 4d Tensor
        x = torch.rand(1, 3, 200, 200)
        out = model(x)
Yanghan Wang's avatar
Yanghan Wang committed
126
        self.assertIn("pred_logits", out)
facebook-github-bot's avatar
facebook-github-bot committed
127
128
129
        # and List[Tensor[C, H, W]]
        x = torch.rand(3, 200, 200)
        out = model([x])
Yanghan Wang's avatar
Yanghan Wang committed
130
        self.assertIn("pred_logits", out)
facebook-github-bot's avatar
facebook-github-bot committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

    def test_warpped_model_script_detection(self):
        class WrappedDETR(nn.Module):
            def __init__(self, model):
                super().__init__()
                self.model = model

            def forward(self, inputs: List[Tensor]):
                sample = nested_tensor_from_tensor_list(inputs)
                return self.model(sample)

        model = detr_resnet50(pretrained=False)
        wrapped_model = WrappedDETR(model)
        wrapped_model.eval()
        scripted_model = torch.jit.script(wrapped_model)
        x = [torch.rand(3, 200, 200), torch.rand(3, 200, 250)]
        out = wrapped_model(x)
        out_script = scripted_model(x)
        self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"]))
        self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"]))


Yanghan Wang's avatar
Yanghan Wang committed
153
@unittest.skipIf(onnxruntime is None, "ONNX Runtime unavailable")
facebook-github-bot's avatar
facebook-github-bot committed
154
155
156
157
158
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

Yanghan Wang's avatar
Yanghan Wang committed
159
160
161
162
163
164
165
166
167
168
    def run_model(
        self,
        model,
        inputs_list,
        tolerate_small_mismatch=False,
        do_constant_folding=True,
        dynamic_axes=None,
        output_names=None,
        input_names=None,
    ):
facebook-github-bot's avatar
facebook-github-bot committed
169
170
171
172
        model.eval()

        onnx_io = io.BytesIO()
        # export to onnx with the first input
Yanghan Wang's avatar
Yanghan Wang committed
173
174
175
176
177
178
179
180
181
182
        torch.onnx.export(
            model,
            inputs_list[0],
            onnx_io,
            do_constant_folding=do_constant_folding,
            opset_version=12,
            dynamic_axes=dynamic_axes,
            input_names=input_names,
            output_names=output_names,
        )
facebook-github-bot's avatar
facebook-github-bot committed
183
184
185
        # validate the exported model with onnx runtime
        for test_inputs in inputs_list:
            with torch.no_grad():
Yanghan Wang's avatar
Yanghan Wang committed
186
187
188
                if isinstance(test_inputs, torch.Tensor) or isinstance(
                    test_inputs, list
                ):
facebook-github-bot's avatar
facebook-github-bot committed
189
190
191
192
                    test_inputs = (nested_tensor_from_tensor_list(test_inputs),)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
Yanghan Wang's avatar
Yanghan Wang committed
193
194
195
            self.ort_validate(
                onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch
            )
facebook-github-bot's avatar
facebook-github-bot committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
Yanghan Wang's avatar
Yanghan Wang committed
213
214
215
        ort_inputs = dict(
            (ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs)
        )  # noqa: C402
facebook-github-bot's avatar
facebook-github-bot committed
216
217
218
        ort_outs = ort_session.run(None, ort_inputs)
        for i in range(0, len(outputs)):
            try:
Yanghan Wang's avatar
Yanghan Wang committed
219
220
221
                torch.testing.assert_allclose(
                    outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05
                )
facebook-github-bot's avatar
facebook-github-bot committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            except AssertionError as error:
                if tolerate_small_mismatch:
                    self.assertIn("(0.00%)", str(error), str(error))
                else:
                    raise

    def test_model_onnx_detection(self):
        model = detr_resnet50(pretrained=False).eval()
        dummy_image = torch.ones(1, 3, 800, 800) * 0.3
        model(dummy_image)

        # Test exported model on images of different size, or dummy input
        self.run_model(
            model,
            [(torch.rand(1, 3, 750, 800),)],
            input_names=["inputs"],
            output_names=["pred_logits", "pred_boxes"],
            tolerate_small_mismatch=True,
        )

    @unittest.skip("CI doesn't have enough memory")
    def test_model_onnx_detection_panoptic(self):
        model = detr_resnet50_panoptic(pretrained=False).eval()
        dummy_image = torch.ones(1, 3, 800, 800) * 0.3
        model(dummy_image)

        # Test exported model on images of different size, or dummy input
        self.run_model(
            model,
            [(torch.rand(1, 3, 750, 800),)],
            input_names=["inputs"],
            output_names=["pred_logits", "pred_boxes", "pred_masks"],
            tolerate_small_mismatch=True,
        )


Yanghan Wang's avatar
Yanghan Wang committed
258
if __name__ == "__main__":
facebook-github-bot's avatar
facebook-github-bot committed
259
    unittest.main()