test_runner_lightning_task.py 8.45 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import os
import unittest
from copy import deepcopy
from typing import Dict

import pytorch_lightning as pl  # type: ignore
import torch
12
from d2go.config import CfgNode, temp_defrost
13
from d2go.quantization.modeling import set_backend_and_create_qconfig
14
from d2go.runner import create_runner
Kai Zhang's avatar
Kai Zhang committed
15
16
17
from d2go.runner.callbacks.quantization import (
    QuantizationAwareTraining,
)
facebook-github-bot's avatar
facebook-github-bot committed
18
from d2go.runner.lightning_task import GeneralizedRCNNTask
Yanghan Wang's avatar
Yanghan Wang committed
19
from d2go.utils.testing import meta_arch_helper as mah
20
from d2go.utils.testing.helper import tempdir
Kai Zhang's avatar
Kai Zhang committed
21
from detectron2.modeling import META_ARCH_REGISTRY
facebook-github-bot's avatar
facebook-github-bot committed
22
from detectron2.utils.events import EventStorage
23
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
facebook-github-bot's avatar
facebook-github-bot committed
24
from torch import Tensor
25
from torch.ao.quantization.quantize_fx import prepare_qat_fx, convert_fx
facebook-github-bot's avatar
facebook-github-bot committed
26
27
28
29


class TestLightningTask(unittest.TestCase):
    def _get_cfg(self, tmp_dir: str) -> CfgNode:
30
        cfg = mah.create_detection_cfg(GeneralizedRCNNTask, tmp_dir)
facebook-github-bot's avatar
facebook-github-bot committed
31
32
33
        cfg.TEST.EVAL_PERIOD = cfg.SOLVER.MAX_ITER
        return cfg

34
35
36
37
38
39
40
    def _get_trainer(self, output_dir: str) -> pl.Trainer:
        checkpoint_callback = ModelCheckpoint(dirpath=output_dir, save_last=True)
        return pl.Trainer(
            max_steps=1,
            limit_train_batches=1,
            num_sanity_val_steps=0,
            callbacks=[checkpoint_callback],
41
            logger=False,
42
43
        )

facebook-github-bot's avatar
facebook-github-bot committed
44
45
46
47
48
49
50
51
52
53
54
    def _compare_state_dict(
        self, state1: Dict[str, Tensor], state2: Dict[str, Tensor]
    ) -> bool:
        if state1.keys() != state2.keys():
            return False

        for k in state1:
            if not torch.allclose(state1[k], state2[k]):
                return False
        return True

55
56
57
58
    @tempdir
    def test_load_from_checkpoint(self, tmp_dir) -> None:
        task = GeneralizedRCNNTask(self._get_cfg(tmp_dir))

59
        trainer = self._get_trainer(tmp_dir)
60
61
62
63
64
65
66
67
68
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)
            ckpt_path = os.path.join(tmp_dir, "test.ckpt")
            trainer.save_checkpoint(ckpt_path)
            self.assertTrue(os.path.exists(ckpt_path))

            # load model weights from checkpoint
            task2 = GeneralizedRCNNTask.load_from_checkpoint(ckpt_path)
facebook-github-bot's avatar
facebook-github-bot committed
69
            self.assertTrue(
70
71
72
                self._compare_state_dict(
                    task.model.state_dict(), task2.model.state_dict()
                )
facebook-github-bot's avatar
facebook-github-bot committed
73
74
            )

75
76
77
78
79
80
81
82
    @tempdir
    def test_train_ema(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        cfg.MODEL_EMA.DECAY = 0.7
        task = GeneralizedRCNNTask(cfg)
        init_state = deepcopy(task.model.state_dict())

83
        trainer = self._get_trainer(tmp_dir)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        for k, v in task.model.state_dict().items():
            init_state[k].copy_(init_state[k] * 0.7 + 0.3 * v)

        self.assertTrue(
            self._compare_state_dict(init_state, task.ema_state.state_dict())
        )

    @tempdir
    def test_load_ema_weights(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        task = GeneralizedRCNNTask(cfg)
100
        trainer = self._get_trainer(tmp_dir)
101
102
103
104
105
106
107
108
109
110
111
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        # load EMA weights from checkpoint
        task2 = GeneralizedRCNNTask.load_from_checkpoint(
            os.path.join(tmp_dir, "last.ckpt")
        )
        self.assertTrue(
            self._compare_state_dict(
                task.ema_state.state_dict(), task2.ema_state.state_dict()
facebook-github-bot's avatar
facebook-github-bot committed
112
            )
113
        )
facebook-github-bot's avatar
facebook-github-bot committed
114

115
116
117
118
119
        # apply EMA weights to model
        task2.ema_state.apply_to(task2.model)
        self.assertTrue(
            self._compare_state_dict(
                task.ema_state.state_dict(), task2.model.state_dict()
120
            )
121
122
123
124
125
126
127
128
129
130
131
132
133
        )

    def test_create_runner(self):
        task_cls = create_runner(
            f"{GeneralizedRCNNTask.__module__}.{GeneralizedRCNNTask.__name__}"
        )
        self.assertTrue(task_cls == GeneralizedRCNNTask)

    @tempdir
    def test_build_model(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        task = GeneralizedRCNNTask(cfg)
134
        trainer = self._get_trainer(tmp_dir)
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        # test building untrained model
        model = GeneralizedRCNNTask.build_model(cfg)
        self.assertTrue(model.training)

        # test loading regular weights
        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertFalse(model.training)
149
            self.assertTrue(
150
                self._compare_state_dict(model.state_dict(), task.model.state_dict())
151
            )
facebook-github-bot's avatar
facebook-github-bot committed
152

153
154
155
156
157
158
        # test loading EMA weights
        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            cfg.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY = True
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertFalse(model.training)
159
160
            self.assertTrue(
                self._compare_state_dict(
161
                    model.state_dict(), task.ema_state.state_dict()
162
163
                )
            )
Kai Zhang's avatar
Kai Zhang committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

    @tempdir
    def test_qat(self, tmp_dir):
        @META_ARCH_REGISTRY.register()
        class QuantizableDetMetaArchForTest(mah.DetMetaArchForTest):
            custom_config_dict = {"preserved_attributes": ["preserved_attr"]}

            def __init__(self, cfg):
                super().__init__(cfg)
                self.avgpool.preserved_attr = "foo"
                self.avgpool.not_preserved_attr = "bar"

            def prepare_for_quant(self, cfg):
                self.avgpool = prepare_qat_fx(
                    self.avgpool,
179
                    {"": set_backend_and_create_qconfig(cfg, is_train=self.training)},
Kai Zhang's avatar
Kai Zhang committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                    self.custom_config_dict,
                )
                return self

            def prepare_for_quant_convert(self, cfg):
                self.avgpool = convert_fx(
                    self.avgpool, convert_custom_config_dict=self.custom_config_dict
                )
                return self

        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL.META_ARCHITECTURE = "QuantizableDetMetaArchForTest"
        cfg.QUANTIZATION.QAT.ENABLED = True
        task = GeneralizedRCNNTask(cfg)

        callbacks = [
            QuantizationAwareTraining.from_config(cfg),
            ModelCheckpoint(dirpath=task.cfg.OUTPUT_DIR, save_last=True),
        ]
        trainer = pl.Trainer(
            max_steps=1,
            limit_train_batches=1,
            num_sanity_val_steps=0,
            callbacks=callbacks,
204
            logger=False,
Kai Zhang's avatar
Kai Zhang committed
205
206
207
208
209
210
211
212
213
214
215
216
        )
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)
        prepared_avgpool = task._prepared.model.avgpool
        self.assertEqual(prepared_avgpool.preserved_attr, "foo")
        self.assertFalse(hasattr(prepared_avgpool, "not_preserved_attr"))

        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertTrue(isinstance(model.avgpool, torch.fx.GraphModule))
217
218
219
220
221
222
223
224
225

    @tempdir
    def test_meta_arch_training_step(self, tmp_dir):
        @META_ARCH_REGISTRY.register()
        class DetMetaArchForWithTrainingStep(mah.DetMetaArchForTest):
            def training_step(self, batch, batch_idx, opt, manual_backward):
                assert batch
                assert opt
                assert manual_backward
Yanghan Wang's avatar
Yanghan Wang committed
226
                # We step the optimizer for progress tracking to occur
227
228
229
230
                # This is reflected in the Trainer's global_step property
                # which is used to determine when to stop training
                # when specifying the loop bounds with Trainer(max_steps=N)
                opt.step()
231
232
233
234
235
236
237
238
239
240
241
                return {"total_loss": 0.4}

        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL.META_ARCHITECTURE = "DetMetaArchForWithTrainingStep"

        task = GeneralizedRCNNTask(cfg)

        trainer = self._get_trainer(tmp_dir)
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)