train_net.py 4.34 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

"""
Detection Training Script.
"""

import logging
9
import sys
10
from typing import List, Optional, Union
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
15
16
17
18
19

import detectron2.utils.comm as comm
from d2go.distributed import launch
from d2go.setup import (
    basic_argument_parser,
    post_mortem_if_fail_for_main,
    prepare_for_launch,
    setup_after_launch,
)
20
from d2go.utils.misc import dump_trained_model_configs, print_metrics_table
21
from detectron2.engine.defaults import create_ddp_model
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


logger = logging.getLogger("d2go.tools.train_net")


def main(
    cfg,
    output_dir,
    runner=None,
    eval_only=False,
    # NOTE: always enable resume when running on cluster
    resume=True,
):
    setup_after_launch(cfg, output_dir, runner)

    model = runner.build_model(cfg)
    logger.info("Model:\n{}".format(model))

    if eval_only:
        checkpointer = runner.build_checkpointer(cfg, model, save_dir=output_dir)
        # checkpointer.resume_or_load() will skip all additional checkpointable
        # which may not be desired like ema states
        if resume and checkpointer.has_checkpoint():
            checkpoint = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume)
        else:
            checkpoint = checkpointer.load(cfg.MODEL.WEIGHTS)
        train_iter = checkpoint.get("iteration", None)
        model.eval()
        metrics = runner.do_test(cfg, model, train_iter=train_iter)
        print_metrics_table(metrics)
        return {
            "accuracy": metrics,
            "model_configs": {},
            "metrics": metrics,
        }

58
59
60
61
62
63
64
    model = create_ddp_model(
        model,
        fp16_compression=cfg.MODEL.DDP_FP16_GRAD_COMPRESS,
        device_ids=None if cfg.MODEL.DEVICE == "cpu" else [comm.get_local_rank()],
        broadcast_buffers=False,
        find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS,
    )
facebook-github-bot's avatar
facebook-github-bot committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

    trained_cfgs = runner.do_train(cfg, model, resume=resume)
    metrics = runner.do_test(cfg, model)
    print_metrics_table(metrics)

    # dump config files for trained models
    trained_model_configs = dump_trained_model_configs(cfg.OUTPUT_DIR, trained_cfgs)
    return {
        # for e2e_workflow
        "accuracy": metrics,
        # for unit_workflow
        "model_configs": trained_model_configs,
        "metrics": metrics,
    }


def run_with_cmdline_args(args):
    cfg, output_dir, runner = prepare_for_launch(args)
    launch(
        post_mortem_if_fail_for_main(main),
        num_processes_per_machine=args.num_processes,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        backend=args.dist_backend,
        args=(cfg, output_dir, runner, args.eval_only, args.resume),
    )

93

94
def cli(args):
facebook-github-bot's avatar
facebook-github-bot committed
95
96
97
98
99
100
101
102
103
    parser = basic_argument_parser(requires_output_dir=False)
    parser.add_argument(
        "--eval-only", action="store_true", help="perform evaluation only"
    )
    parser.add_argument(
        "--resume",
        action="store_true",
        help="whether to attempt to resume from the checkpoint directory",
    )
104
    run_with_cmdline_args(parser.parse_args(args))
facebook-github-bot's avatar
facebook-github-bot committed
105

106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def build_cli_args(
    config_path: str,
    output_dir: str,
    runner_name: Optional[str] = None,
    num_processes: Optional[Union[int, str]] = None,
    num_machines: Optional[Union[int, str]] = None,
    machine_rank: Optional[Union[int, str]] = None,
    dist_url: Optional[str] = None,
    dist_backend: Optional[str] = None,
    eval_only: bool = False,
    resume: bool = False,
) -> List[str]:
    """Returns parameters in the form of CLI arguments for train_net binary."""
    args = [
        "--config-file",
        config_path,
        "--output-dir",
        output_dir,
    ]
    if runner_name is not None:
        args += ["--runner", runner_name]
    if num_processes is not None:
        args += ["--num-processes", str(num_processes)]
    if num_machines is not None:
        args += ["--num-machines", str(num_machines)]
    if machine_rank is not None:
        args += ["--machine-rank", str(machine_rank)]
    if dist_url is not None:
        args += ["--dist-url", str(dist_url)]
    if dist_backend is not None:
        args += ["--dist-backend", str(dist_backend)]
    if eval_only:
        args += ["--eval-only"]
    if resume:
        args += ["--resume"]
    return args


facebook-github-bot's avatar
facebook-github-bot committed
145
if __name__ == "__main__":
Yanghan Wang's avatar
Yanghan Wang committed
146
    cli(sys.argv[1:])