test_modeling_distillation.py 18 KB
Newer Older
Matthew Yu's avatar
Matthew Yu committed
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

import unittest
from typing import List

import mock
import numpy as np
import torch
import torch.nn as nn
from d2go.config import CfgNode
Yanghan Wang's avatar
Yanghan Wang committed
12
from d2go.modeling import modeling_hook as mh
Matthew Yu's avatar
Matthew Yu committed
13
14
from d2go.modeling.distillation import (
    _build_teacher,
15
    _set_device,
Matthew Yu's avatar
Matthew Yu committed
16
17
    add_distillation_configs,
    BaseDistillationHelper,
18
    CachedLayer,
Matthew Yu's avatar
Matthew Yu committed
19
20
21
22
23
    DistillationModelingHook,
    ExampleDistillationHelper,
    LabelDistillation,
    NoopPseudoLabeler,
    PseudoLabeler,
24
    record_layers,
Matthew Yu's avatar
Matthew Yu committed
25
    RelabelTargetInBatch,
26
    unrecord_layers,
Matthew Yu's avatar
Matthew Yu committed
27
28
29
30
)
from d2go.registry.builtin import (
    DISTILLATION_ALGORITHM_REGISTRY,
    DISTILLATION_HELPER_REGISTRY,
31
    META_ARCH_REGISTRY,
Matthew Yu's avatar
Matthew Yu committed
32
)
33
from d2go.runner.default_runner import BaseRunner
Matthew Yu's avatar
Matthew Yu committed
34
from d2go.utils.testing import helper
35
36
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.utils.file_io import PathManager
Matthew Yu's avatar
Matthew Yu committed
37
from mobile_cv.common.misc.file_utils import make_temp_directory
38
from mobile_cv.common.misc.mixin import dynamic_mixin, remove_dynamic_mixin
Matthew Yu's avatar
Matthew Yu committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


class DivideInputBy2(nn.Module):
    def forward(self, batched_inputs: List):
        """Divide all targets by 2 and batch output"""
        return [x / 2.0 for x in batched_inputs]


class DivideInputDictBy2(nn.Module):
    def forward(self, batched_inputs: List):
        """Divide all inputs by 2 and batch output

        Should be used with a pseudo labeler that will unpack the
        resulting tensor
        """
        output = []
        for d in batched_inputs:
            output.append(d["input"] / 2.0)
        return torch.stack(output)


60
61
62
63
64
65
class DivideInputBy2OutputDict(nn.Module):
    def forward(self, batched_inputs: List):
        """Divide all targets by 2 and return dict output"""
        return {i: x / 2.0 for i, x in enumerate(batched_inputs)}


Matthew Yu's avatar
Matthew Yu committed
66
67
68
69
70
71
72
73
class AddOne(nn.Module):
    def __init__(self):
        super().__init__()
        self.weight = nn.Parameter(torch.Tensor([1]))

    def forward(self, x):
        return x + self.weight

74
75
76
77
    @property
    def device(self):
        return self.weight.device

Matthew Yu's avatar
Matthew Yu committed
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
class AddLayers(nn.Module):
    def __init__(self):
        super().__init__()
        self.layer0 = AddOne()
        self.layer1 = AddOne()
        self.layer2 = AddOne()

    def forward(self, x):
        x = self.layer0(x)
        x = self.layer1(x)
        x = self.layer2(x)
        return x


Matthew Yu's avatar
Matthew Yu committed
93
94
95
96
97
98
99
100
class TestLabeler(PseudoLabeler):
    def __init__(self, teacher):
        self.teacher = teacher

    def label(self, x):
        return self.teacher(x)


101
102
103
104
105
106
107
108
109
110
@META_ARCH_REGISTRY.register()
class TestMetaArchAddRand(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(1))

    def forward(self, x):
        return x + self.weight


Matthew Yu's avatar
Matthew Yu committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
@DISTILLATION_HELPER_REGISTRY.register()
class TestHelper(BaseDistillationHelper):
    def get_pseudo_labeler(self):
        """Run teacher model on inputs"""
        return TestLabeler(self.teacher)


class Noop(nn.Module):
    def forward(self, x):
        return x


def _get_input_data(n: int = 2, use_input_target: bool = False, requires_grad=False):
    """Return input data, dict if use_input_target is specified"""
    if not use_input_target:
        return torch.randn(n, requires_grad=requires_grad)

    return [
        {
            "input": torch.randn(1, requires_grad=requires_grad),
            "target": torch.randn(1),
        }
        for _ in range(n)
    ]


def _get_default_cfg():
    cfg = CfgNode()
    cfg.MODEL = CfgNode()
    cfg.MODEL.DEVICE = "cpu"
    cfg.MODEL.META_ARCHITECTURE = "TestArch"
    add_distillation_configs(cfg)
143
    # model_ema.add_model_ema_configs(cfg)
Matthew Yu's avatar
Matthew Yu committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    cfg.DISTILLATION.ALGORITHM = "LabelDistillation"
    cfg.DISTILLATION.HELPER = "BaseDistillationHelper"
    cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = ""
    cfg.DISTILLATION.TEACHER.DEVICE = ""
    return cfg


class TestDistillation(unittest.TestCase):
    def test_add_distillation_configs(self):
        """Check default config"""
        cfg = CfgNode()
        add_distillation_configs(cfg)
        self.assertTrue(isinstance(cfg.DISTILLATION.TEACHER, CfgNode))

158
159
160
161
162
        # check teacher model config is clone of student model
        self.assertEqual(cfg.DISTILLATION.TEACHER.CONFIG_FNAME, "")

    def test_build_teacher_torchscript(self):
        """Check can build teacher using torchscript fname in config"""
Matthew Yu's avatar
Matthew Yu committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        # create torchscript
        model = DivideInputBy2()
        traced_model = torch.jit.trace(model, torch.randn(5))
        with make_temp_directory("tmp") as output_dir:
            fname = f"{output_dir}/tmp.pt"
            torch.jit.save(traced_model, fname)

            # create teacher
            cfg = _get_default_cfg()
            cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = fname
            teacher = _build_teacher(cfg)
            batched_inputs = torch.randn(5)
            gt = batched_inputs / 2.0
            output = teacher(batched_inputs)
            torch.testing.assert_close(torch.Tensor(output), gt)

    @helper.skip_if_no_gpu
180
    def test_build_teacher_torchscript_gpu(self):
Matthew Yu's avatar
Matthew Yu committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        """Check teacher moved to cuda"""
        model = AddOne()
        traced_model = torch.jit.trace(model, torch.randn(5))
        with make_temp_directory("tmp") as output_dir:
            fname = f"{output_dir}/tmp.pt"
            torch.jit.save(traced_model, fname)

            # create teacher
            cfg = _get_default_cfg()
            cfg.MODEL.DEVICE = "cuda"
            cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = fname
            teacher = _build_teacher(cfg)
            batched_inputs = torch.randn(5).to("cuda")
            gt = batched_inputs + torch.Tensor([1]).to("cuda")
            output = teacher(batched_inputs)
            torch.testing.assert_close(torch.Tensor(output), gt)

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def test_build_teacher_config(self):
        """Check build pytorch model using config"""
        # build model
        cfg = _get_default_cfg()
        cfg.MODEL.META_ARCHITECTURE = "TestMetaArchAddRand"
        gt_model = BaseRunner().build_model(cfg)
        with make_temp_directory("tmp") as output_dir:
            # save model
            checkpointer = DetectionCheckpointer(gt_model, save_dir=output_dir)
            checkpointer.save("checkpoint")
            cfg.MODEL.WEIGHTS = f"{output_dir}/checkpoint.pth"
            config_fname = f"{output_dir}/config.yaml"
            with PathManager.open(config_fname, "w") as f:
                f.write(cfg.dump())

            # load model and compare to gt
            cfg.DISTILLATION.TEACHER.TYPE = "config"
            cfg.DISTILLATION.TEACHER.CONFIG_FNAME = config_fname
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
            model = _build_teacher(cfg)
            self.assertEqual(gt_model.weight, model.weight)

    def test_override_teacher_config_gpu_on_cpu(self):
        """Teacher cuda model can be run on cpu if specified in config"""
        # build model where teacher is specified on gpu but user overrides cpu
        cfg = _get_default_cfg()
        cfg.MODEL.META_ARCHITECTURE = "TestMetaArchAddRand"
        gt_model = BaseRunner().build_model(cfg)
        with make_temp_directory("tmp") as output_dir:
            # save model
            checkpointer = DetectionCheckpointer(gt_model, save_dir=output_dir)
            checkpointer.save("checkpoint")
            cfg.MODEL.WEIGHTS = f"{output_dir}/checkpoint.pth"
            cfg.MODEL.DEVICE = "cuda"
            config_fname = f"{output_dir}/config.yaml"
            with PathManager.open(config_fname, "w") as f:
                f.write(cfg.dump())

            # load model and compare to gt
            cfg.DISTILLATION.TEACHER.TYPE = "config"
            cfg.DISTILLATION.TEACHER.CONFIG_FNAME = config_fname
            cfg.DISTILLATION.TEACHER.DEVICE = "cpu"
239
240
241
            model = _build_teacher(cfg)
            self.assertEqual(gt_model.weight, model.weight)

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def test_set_device(self):
        """Check teacher device is set"""
        # without attr
        model = Noop()
        self.assertFalse(hasattr(model, "device"))
        device = torch.device("cpu")

        # without property
        model = _set_device(model, device)
        self.assertEqual(model.device, device)

        # with property
        model = AddOne()
        model = _set_device(model, device)
        self.assertEqual(model.device, device)

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    def test_cached_layer_tensor(self):
        """Check cached layer saves layer output"""
        model = AddOne()
        cache = {}
        dynamic_mixin(
            model,
            CachedLayer,
            init_dict={"label": "test_layer", "cache": cache},
        )
        input = torch.randn(1)
        output = model(input)
        self.assertEqual(output, cache["test_layer"])

    def test_cached_layer_list(self):
        """Check cached layer saves list"""
        model = DivideInputBy2()
        cache = {}
        dynamic_mixin(
            model,
            CachedLayer,
            init_dict={"label": "test_layer", "cache": cache},
        )
        input = [torch.randn(1) for _ in range(2)]
        output = model(input)
        self.assertEqual(output, cache["test_layer"])

    def test_cached_layer_dict(self):
        """Check cached layer saves dict"""
        model = DivideInputBy2OutputDict()
        cache = {}
        dynamic_mixin(
            model,
            CachedLayer,
            init_dict={"label": "test_layer", "cache": cache},
        )
        input = [torch.randn(1) for _ in range(2)]
        output = model(input)
        self.assertEqual(output, cache["test_layer"])

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    def test_record_layers(self):
        """Check we can record specified layer"""
        model = AddLayers()
        cache = record_layers(model, ["", "layer0", "layer1", "layer2"])

        input = torch.Tensor([0])
        output = model(input)
        self.assertEqual(cache["layer0"], torch.Tensor([1]))
        self.assertEqual(cache["layer1"], torch.Tensor([2]))
        self.assertEqual(cache["layer2"], torch.Tensor([3]))
        self.assertEqual(cache[""], output)

    def test_unrecord_layers(self):
        """Check we can remove a recorded layer"""
        model = AddLayers()
        _ = record_layers(model, ["", "layer0", "layer1", "layer2"])
        unrecord_layers(model, ["", "layer0"])
        self.assertFalse(hasattr(model.layer0, "cache"))

Matthew Yu's avatar
Matthew Yu committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

class TestPseudoLabeler(unittest.TestCase):
    def test_noop(self):
        """Check noop"""
        pseudo_labeler = NoopPseudoLabeler()
        x = np.random.randn(1)
        output = pseudo_labeler.label(x)
        self.assertEqual(x, output)

    def test_relabeltargetinbatch(self):
        """Check target is relabed using teacher"""
        teacher = DivideInputDictBy2()
        teacher.eval()
        teacher.device = torch.device("cpu")
        relabeler = RelabelTargetInBatch(teacher=teacher)
        batched_inputs = _get_input_data(n=2, use_input_target=True)
        gt = [{"input": d["input"], "target": d["input"] / 2.0} for d in batched_inputs]
        outputs = relabeler.label(batched_inputs)
        self.assertEqual(outputs, gt)


class TestDistillationHelper(unittest.TestCase):
    def test_registry(self):
        """Check base class in registry"""
        self.assertTrue("BaseDistillationHelper" in DISTILLATION_HELPER_REGISTRY)

    def test_base_distillation_helper(self):
        """Check base distillation helper returns input as output"""
        dh = BaseDistillationHelper(cfg=None, teacher=None)
        pseudo_labeler = dh.get_pseudo_labeler()
        self.assertTrue(isinstance(pseudo_labeler, NoopPseudoLabeler))

    def test_default_distillation_helper(self):
        """Default distillation uses teacher to relabel targets"""
        teacher = Noop()
        dh = ExampleDistillationHelper(cfg=None, teacher=teacher)
        pseudo_labeler = dh.get_pseudo_labeler()
        self.assertTrue(isinstance(pseudo_labeler, RelabelTargetInBatch))
        self.assertTrue(isinstance(pseudo_labeler.teacher, Noop))


class TestDistillationAlgorithm(unittest.TestCase):
    class LabelDistillationNoop(LabelDistillation, Noop):
        """Distillation should be used with dynamic mixin so we create
        a new class with mixin of a noop to test"""

        pass

    def test_registry(self):
        """Check distillation teacher in registry"""
        self.assertTrue("LabelDistillation" in DISTILLATION_ALGORITHM_REGISTRY)

    def test_label_distillation_inference(self):
        """Check inference defaults to student

        Use LabelDistillationNoop to set student model to noop
        """
        batched_inputs = _get_input_data(n=2)
        gt = batched_inputs.detach().clone()
        model = self.LabelDistillationNoop()
        model.dynamic_mixin_init(
            distillation_helper=TestHelper(cfg=None, teacher=DivideInputBy2()),
        )
        model.eval()
        output = model(batched_inputs)
        np.testing.assert_array_equal(output, gt)

    def test_label_distillation_training(self):
        """Check training uses pseudo labeler

        Distillation teacher should run the teacher model on the inputs and
        then pass to the noop
        """
        batched_inputs = _get_input_data(n=2, requires_grad=True)
        gt = [x / 2.0 for x in batched_inputs]
        model = self.LabelDistillationNoop()
        model.dynamic_mixin_init(
            distillation_helper=TestHelper(cfg=None, teacher=DivideInputBy2()),
        )
        model.train()
        output = model(batched_inputs)
        torch.testing.assert_close(output, gt)

        sum(output).backward()
        torch.testing.assert_close(batched_inputs.grad, torch.Tensor([0.5, 0.5]))


class TestDistillationModelingHook(unittest.TestCase):
    _build_teacher_ref = "d2go.modeling.distillation._build_teacher"

    def test_exists(self):
        """Check that the hook is registered"""
        self.assertTrue("DistillationModelingHook" in mh.MODELING_HOOK_REGISTRY)

    def test_init(self):
        """Check that we can build hook"""
        cfg = _get_default_cfg()
        with mock.patch(self._build_teacher_ref):
            DistillationModelingHook(cfg)

    def test_apply(self):
        """Check new model has distillation methods"""
        model = Noop()
        model.test_attr = "12345"
        cfg = _get_default_cfg()
        cfg.DISTILLATION.HELPER = "TestHelper"
        with mock.patch(self._build_teacher_ref):
            hook = DistillationModelingHook(cfg)
        hook.apply(model)
        # set teacher manually to override _build_teacher
        model.pseudo_labeler.teacher = DivideInputBy2()

        # check distillation attrs
        self.assertTrue(isinstance(model.distillation_helper, TestHelper))
        self.assertEqual(model._original_model_class, Noop)

        # check retains attrs
        self.assertTrue(hasattr(model, "test_attr"))
        self.assertEqual(model.test_attr, "12345")

        # check inference uses the baseline model which is a noop
        batched_inputs = _get_input_data(n=2)
        model.eval()
        gt = batched_inputs.detach().clone()
        output = model(batched_inputs)
        torch.testing.assert_close(output, gt)

        # check training uses the pseudo labeler
        model.train()
        gt = [x / 2.0 for x in batched_inputs]
        output = model(batched_inputs)
        torch.testing.assert_close(output, gt)

    def test_unapply(self):
        """Check removing distillation"""
        model = Noop()
        cfg = _get_default_cfg()
        with mock.patch(self._build_teacher_ref):
            hook = DistillationModelingHook(cfg)
        hook.apply(model)
        hook.unapply(model)

        for distillation_attr in [
            "distillation_helper",
            "_original_model_class",
        ]:
            self.assertFalse(hasattr(model, distillation_attr))

        # check forward is the original noop
        batched_inputs = _get_input_data(n=2)
        gt = batched_inputs.detach().clone()
        model.train()
        output = model(batched_inputs)
        torch.testing.assert_close(output, gt)
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513


class DistillationMiscTests(unittest.TestCase):
    def test_teacher_outside_updated_parameters(self):
        """
        Check that teacher values are ignored when updating student

        The teacher can often be referenced in the mixed in model. A common
        example is when the teacher is an attributed of the distillation
        helper.
         => DistillationModel.distillation_helper.teacher

        This raises the question of whether the teacher model will be affected
        by calls to the mixed in model:
            DisillationModel.train() => does teacher switch to training?
            setup_qat(DistillationModel) => will fuse occur on the teacher modules?

        The answer to these questions should be no as we want the teacher to remain static
        during training (unless specified). This is the case as long as teacher is an
        attribute of a non-module class (e.g., distillation_helper). This is because
        modules are registered in PyTorch as part of __setattr__. __setattr__ only checks
        if the value is a module or parameter. If the value is an object
        (e.g., distillation_helper) which contains modules, these modules are ignored.
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module.register_parameter

        This unittest builds the teacher model and checks that only the student
        parameter is registered.
        """
        cfg = _get_default_cfg()
        cfg.MODEL.META_ARCHITECTURE = "TestMetaArchAddRand"
        prebuilt_teacher = BaseRunner().build_model(cfg)
        with make_temp_directory("tmp") as output_dir:
            checkpointer = DetectionCheckpointer(prebuilt_teacher, save_dir=output_dir)
            checkpointer.save("checkpoint")
            cfg.MODEL.WEIGHTS = f"{output_dir}/checkpoint.pth"
            config_fname = f"{output_dir}/config.yaml"
            with PathManager.open(config_fname, "w") as f:
                f.write(cfg.dump())
            cfg.DISTILLATION.TEACHER.TYPE = "config"
            cfg.DISTILLATION.TEACHER.CONFIG_FNAME = config_fname
            cfg.DISTILLATION.HELPER = "TestHelper"
            cfg.MODEL.MODELING_HOOKS = ["DistillationModelingHook"]
            distilled_model = BaseRunner().build_model(cfg)
            self.assertEqual(len(list(distilled_model.parameters())), 1)